» » Схема управления светом с пульта ду. Ик выключатель с пультом дистанционного управления Использование датчиков для управления освещением

Схема управления светом с пульта ду. Ик выключатель с пультом дистанционного управления Использование датчиков для управления освещением

Приемник ИК — команд пульта дистанционного управления для управления бытовой техникой может быть легко сделан с применением десятичного счетчика CD4017, таймера NE555 и инфракрасного приемника TSOP1738.

Используя эту схема ИК приемника, можно с легкостью управлять своей бытовой техникой с помощью пульта от телевизора, DVD-плеера или же с помощью схемы ПДУ описанного в конце статьи.

Схема ИК приемника для дистанционного управления

Выводы 1 и 2 ик-приемника TSOP1738 используются для его питания. Резистор R1 и конденсатор C1 предназначены для стабильной работы и подавления различных помех по цепи питания.

Когда ИК лучи на частоте 38 кГц падает на ИК-приемник TSOP1738, на его выходе 3 появляется низкий уровень напряжения, при исчезновении ик-лучей вновь появляется высокий уровень. Этот отрицательный импульс усиливается транзистором Q1, который передает усиленный частотный сигнал на вход десятичного счетчика CD4017. Выводы счетчика 16 и 8 предназначены для питания его. Вывод 13 подключен к земле, разрешая тем самым его работу.

Выход Q2 (4 контакт) подключен к выводу сброса (15 контакт), чтобы сделать работу CD4017 в режиме бистабильного мультивибратора. В время первого импульса на Q0 появляется лог1, второй синхросигнал вызывает появление лог1 на Q1 (Q0 становится низким), а на третий сигнал опять выводит на Q0 лог 1 (Q2 подключен к MR, поэтому третий тактовый сигнал сбрасывает счетчик).

Давайте предположим, счетчик совершил сброс (Q0 высокий уровень, а остальные низкий). При нажатии на кнопку ПДУ, тактовый сигнал воздействует на счетчик, что приводит к появлению высокого уровня на Q1. Таким образом, LED D1 светится, транзистор Q2 включается и активируется реле.

Когда вновь нажимают кнопку ПДУ, на выводе Q0 появляется лог 1, реле отключается и LED D2 загорается. LED D1 указывает, когда прибор включен и LED D2 указывает, когда прибор выключен.

Вы можете использовать свой пульт от телевизора для управления или собрать отдельный на по приведенной ниже схеме.

Дистанционное управление на ИК лучах вторглось в повседневную жизнь и значительно экономит наше время. К сожалению, оборудованы ДУ далеко не все электроприборы, в частности и выключатели освещения. Предлагаемое устройство поможет сделать управление ими более удобным.

Выключателем управляют с помощью передатчика ИК импульсов (пульта), по команде которого выключенная в момент ее подачи осветительная лампа будет включена, и наоборот. В прибор встроен дополнительный ИК передатчик, что избавляет от необходимости постоянно носить пульт с собой или тратить время на его поиски. Достаточно поднести к выключателю руку на расстояние приблизительно десять сантиметров и он сработает.

Выключатель реагирует на импульсное ИК излучение, не расшифровывая содержащийся в нем код. Поэтому подойдет любой пульт ДУ от импортного или отечественного электронного прибора(например,телевизора), причем нажимать можно на кнопку любой команды. Можно сделать и самодельный пульт, например, по схеме, приведенной в статье Ю. Виноградова "ИК датчик в охранной сигнализации" ("Радио", 1996, № 7, с. 42, рис. 2). Там же можно найти чертеж печатной платы и рекомендации по изготовлению устройства.

Схема самого простого варианта пульта управления показана на рис. 1. Это - генератор импульсов на транзисторах разной структуры, нагрузкой которого служит излучающий диод И К диапазона АЛ147А. Генератор питают от трех-четырех гальванических элементов, команду подают кратковременным нажатием на кнопку SB 1.

Схема выключателя показана на рис. 2. Приемник ИК импульсов собран по схеме подобной применяемой в блоках управления телевизоров "Рубин" и "Темп". На транзисторах VT1 - VT4 собран усилитель импульсов, в которые преобразует принятое ИК излучение фотодиод VD1 - ФД265 или любой другой, чувствительный к ИК лучам. Далее принятый сигнал проходит через активный фильтр с двойным Т-мостом, собранный на транзисторе VT5. Фильтр устраняет помехи от осветительных ламп, излучение которых захватывает ИК область спектра и промодулировано удвоенной частотой сети переменного тока. Возможное иногда самовозбуждение этого фильтра устраняют заменой транзистора другим, с меньшим значением h21Э.

(нажмите для увеличения)

Отфильтрованный сигнал, пройдя через усилитель-ограничитель на транзисторе VT6 и элементе DD1.1, поступает на накопитель (диод VD4 и цепь R19C12). Параметры элементов накопителя выбраны таким образом, что конденсатор С12 успевает зарядиться до уровня срабатывания элемента DD1.2 только за три-шесть принятых импульсов. Это предотвращает срабатывание выключателя от одиночных световых импульсов: фотографических ламп-вспышек, грозовых разрядов. Разрядка конденсатора С12 занимает 1...2 с.

Узел на логических элементах DD1.2, DD1.3, DD1.6, благодаря обратной связи через конденсатор С13, формирует импульсы с крутыми перепадами уровня, поступающие на счетный вход триггера DD2. С каждым из них триггер изменяет состояние. При лог. 1 на выводе 1 триггера открыты транзисторы VT9, VT10 и тринистор VS1. Цепь лампы EL1 замкнута, освещение включено. Свечение двуцветного светодиода HL1 - зеленое. В противном случае (лог. 1 на выводе 2 триггера) освещение выключено, свечение светодиода HL1 - красное. В это же состояние приводит триггер импульс, формируемый цепью C19R24. Таким образом устраняют самопроизвольное включение освещения после перебоя в подаче электроэнергии.

Встроенный ИК передатчик - собранный на элементах DD1.4, DD1.5 генератор импульсов частотой 30...35 Гц - позволяет пользоваться выключателем, не имея в руках пульта ДУ. Излучающий диод ВI1 установлен рядом с фотодиодом VD1, но отделен от него светонепроницаемой перегородкой. Излучение диода ВI1 направлено в ту сторону, откуда фотодиод его принимает. Выключатель должен срабатывать от ИК импульсов встроенного передатчика, отраженных от ладони, поднесенной на расстояние 5...20 см. Необходимую для этого мощность излучаемых импульсов устанавливают, изменяя номинал резистора R20.

(нажмите для увеличения)

Преимущество данного бесконтактного выключателя в отличие от других схем , например, состоит в том, что им можно включать и выключать освещение или же любую другую нагрузку бесконтактным способом то есть, не прикасаясь своими руками непосредственно к устройству.

Осуществлять управление освещением можно двумя разными путями. Первый, поднеся руку непосредственно к оптическому датчику данного выключателя на расстоянии 10 сантиметров. Второй, посредством любого типового пульта дистанционного управления использующий в своей работе модулированное инфракрасное излучение.

Простой взмах рукой либо нажатие на произвольную кнопку ПДУ и бесконтактный выключатель меняет свое состояние на противоположное. В случае сбоя в электросети и при возобновлении электроснабжения, оптический выключатель света будет находиться в выключенном состоянии.

Повысив силу излучения инфракрасного светодиода, выполняющего роль оптического датчика, можно добиться увеличения дальности действия срабатывания устройства. В этом случае, к примеру, устройство может оповещать охрану о подъезде автомобиля к пропускному пункту.

Описание работы оптического бесконтактного выключателя.

В схеме применена всего одна интегральная микросхема К561ТМ2, имеющая в своем составе два D-триггера. На первом триггере DD1.1 собран мультивибратор, создающий прямоугольные импульсы в диапазоне 35…40кГц. Подстройка частоты осуществляется путем подбора сопротивлений R1 и R2.

Данные импульсы, пройдя сквозь токоограничивающий резистор R3, поступают на ИК-светодиод HL1. Можно применить любой подходящий ИК-светодиод, к примеру, такой который используется в ПДУ. Совместно с фотодатчиком они создают оптическую схему, которая срабатывает при отражении инфракрасного излучения.

Для предотвращения ложных срабатываний между фотодатчиком и ИК-светодиодом, необходимо проложить непрозрачную перегородку, а так же они должны быть обращены в сторону, куда подносят руки. Схема запитана от собранного на диодном мосте VD4, гасящем резисторе R7 и стабилитроне VD3 на 4.7В. Конденсатор C5 предназначен для фильтрации выпрямленного напряжения.

В момент подачи напряжения на бесконтактный выключатель освещения, через резистор R5 идет зарядка конденсатора C4. В результате этого на вход триггера DD1.2 поступает импульс, из-за которого на инверсном его выходе 2 появляется уровень лог.0. транзистор VT1 закрыт и лампа не горит.

Так же после подачи питания на схему оптического выключателя, начинает генерировать импульсы. Приблизительная частота их составляет 38 кГц, и соответственно светодиод испускает излучение с такой же частотой. Если теперь поднести руку к окошку, где расположен оптический блок выключателя, то отраженный луч от руки попадет на фотоприемник. На его выходе образуется низкий уровень напряжения, убрав руку, вновь появляется высокий уровень. Таким образом, формируется импульс, который поступая на вход 3 триггера DD1.2 переключает его в противоположное состояние, тем самым включая освещение.

Для обеспечения четкого переключения триггера добавлена цепь из элементов R6 и C3, обеспечивающая некоторую задержку переключения.

В наше время практически невозможно представить аппаратуру без пульта дистанционного управления . Но вот, к сожалению, еще не все устройства снабжены такими пультами...

Китайские производители, правда, уже начали выпуск люстр снабженных пультами с управлением радиосигналом, но стоимость таких устройств довольно высокая.

В этой статье предлагается довольно простая схема такого выключателя. В отличие от промышленной, которая включает в себя одну БИСку, она в основном собрана на дискретных элементах, что, конечно, увеличивает габариты, но зато в случаи необходимости легко подвергается ремонту. Но если гнаться за габаритами, то в этом случаи можно использовать планарные детали. Эта схема также обладает и встроенным передатчиком (в промышленных его нет), что избавляет вас от надобности всё время носить с собой пульт или искать его. Достаточно поднести к выключателю руку на расстоянии до десяти сантиметров как он сработает. Ещё одно преимущество заключается в том, что к ДУ подходят любые пульты от любой импортной или отечественной радиотехники.

Передатчик

На рис.1 приведена схема излучателя коротких импульсов . Что позволяет уменьшить потребляемый передатчиком ток от источника питания, а значит продлить срок службы на одной батарее питания. На элементах DD1.1, DD1.2 собран генератор импульсов, следующих с частотой 30...35 Гц. Короткие, длительностью 13...15 мкс, импульсы формирует дифференцирующая цепь C2R3. Элементы DD1.4-DD1.6 и нормально закрытый транзистор VT1 образуют импульсный усилитель с ИК диодом VD1 на нагрузке.

Зависимость основных параметров такого генератора от напряжения питания Uпит показаны в таблице.

Uпит, В
Iимп, А
Iпот, мА
4.5
0.24
0.4
5
0.43
0.57
6
0.56
0.96
7
0.73
1.5
8
0.88
2.1
9
1.00
2.8

Здесь: Iимп - амплитуда тока в ИК диоде, Iпот - ток, потребляемый генератором от источника питания (при указанном на схеме номиналом резисторов R5 и R6).

Передатчиком может служить также любой пуль дистанционного управления от отечественной или импортной техники (телевизора, видеомагнитофона, музыкального центра).

Печатная плата приведена на рис.3. Её предлагается изготовить из двухстороннего фольгированного стеклотекстолита толщиной 1,5 мм. Фольга со стороны деталей (на рисунке не показана) выполняют функцию общего (минусового) провода источника питания. Вокруг отверстий для пропускания выводов деталей в фольге вытравлены участки диаметром по 1,5...2 мм. Выводы деталей, соединённых с общем проводом, припаивают непосредственно к фольге этой стороны платы. Транзистор VT1 крепят к плате винтом М3, без какого либо теплоотвода. Оптическая ось ИК диода VD1 должна быть параллельна плате, и отстоять от неё на 5 мм.

Приёмник

Приемник собран по классической схеме принятой в российской промышленности (в частности в телевизорах Рубин, Темп и т.п.) . Его схема приведена на рисунке 2. Импульсы ИК-излучения попадают на ИК фотодиод VD1 , преобразуются в электрические сигналы и усиливаются транзисторами VT3, VT4 , каторге включены по схеме с общем эмиттером. На транзисторе VT2 собран эмиттерный повторитель, согласующий сопротивление динамической нагрузки фотодиода VD1 и транзистора VT1 с входным сопротивлением усилительного каскада на транзисторе VT3. Диоды VD2,VD3 предохраняют импульсный усилитель на транзисторе VT4 от перегрузок. Все входные усилительные каскады приемника охвачены глубокой обратной связью по току. Это обеспечивает постоянное положение рабочей точки транзисторов независимо от внешнего уровня засветки - своего рода автоматическую регулировку усиления, особенно важную при работе приемника в помещениях с искусственным освещением или на улице при ярком дневном свете, когда уровень посторонних ИК-излучений очень высок.

Далее сигнал проходит через активный фильтр с двойным Т-образным мостом, собранный на транзисторе VT5, резисторах R12-R14 и конденсаторах C7-C9. Транзистор VT5 должен иметь коэффициент передачи тока Н21э=30, в противном случаи фильтр может начать возбуждаться. Фильтр очищает сигнал передатчика от помех сети переменного тока, которые излучаются электрическими лампами. Лампы создают модулированный поток излучения с частотой 100 Гц и не только видимой части спектра, но и в ИК области. Отфильтрованный сигнал кодовой посылки формируется на транзисторе VT6. В результате на его коллекторе получаются короткие импульсы (если поступали с внешнего передатчика) или пропорциональные с частотой 30...35 Гц (если поступали от встроенного передатчика).

Импульсы, поступающие с приёмника, поступают на буферный элемент DD1.1, а с него на выпрямительную цепочку. Выпрямительная цепочка VD4, R19, C12 работает так: Когда на выходе элемента логический 0, то диод VD4 закрыт и конденсатор С12 разряжен. Как только на выходе элемента возникают импульсы, конденсатор начинает заряжаться, но постепенно (не с первого импульса), а диод препятствует его разрядке. Резистор R19 выбран таким образом, чтобы конденсатор успел зарядиться до напряжения равного логической 1 только с 3...6 импульса поступающего с приёмника. Это ещё одна защита от помех, коротких ИК вспышек (например, от фотовспышки фотоаппарата, разряда молнии и т. п.). Разряд конденсатора происходит через резистор R19 и занимает по времени 1...2 с. Это позволяет предотвратить дробление и произвольное включение, и выключение света. Далее установлен усилитель DD1.2, DD1.3 с ёмкостной обратной связью (C3) для получения на его выходе резких прямоугольных перепадав (при включении и выключении). Эти перепады поступают на вход триггера делителя на 2 собранного на микросхеме DD2. Не инвертный его выход подключён к усилителю на транзисторе VT10, который управляет тиристором VD11, и транзистор VT9. Инвертный же подан на транзистор VT8. Оба эти транзистора (VT8, Vt9) служат для зажигания соответствующего цвета на светодиоде VD6 при включении и выключении света. Он выполняет ещё и функцию "маяка" при выключенном свете. На вход R триггера делителя подключена RC цепочка, которая осуществляет сброс. Он нужен для того, чтобы если отключили напряжения в квартире, то после включения свет случайно не зажёгся.

Встроенный передатчик служит для включения света без пульта дистанционного управления (при поднесение ладони к выключателю). Он собран на элементах DD1.4-DD1.6, R20-R23, C14, VT7, VD5. Встроенный передатчик представляет собой генератор импульсов с частотой следования 30...35 Гц и усилитель в нагрузку каторгой включён ИК светодиод. ИК светодиод устанавливается рядом с ИК фотодиодом и должен быть направлен с ним в одну сторону, и они должны быть разделены светонепроницаемой перегородкой. Резистор R20 подбирается таким образом, чтобы расстояние срабатывания, при подносе ладони, было равно 50...200 мм. Во встроенном передатчике можно использовать ИК диод типа АЛ147А или любой другой. (Я, к примеру, использовал ИК диод от старого дисковода, но при этом резистор R20=68 Ом).

Блок питания собран по классической схеме на КРЕН9Б и выходное напряжение равно 9В. Он включает в себя DA1, C15-C18, VS1, T1. Конденсатор С19 служит для защиты устройства от скачков напряжения в электросети.Нагрузка на схеме показана лампой накаливания.

Печатная плата приёмника (рис.4) выполнена из одностороннего фольгированного стеклотекстолита размером 100Х52 мм и толщиной 1,5 мм. Все детали, за исключением диода VD1, VD5, VD8, устанавливают как обычно, эти же диоды устанавливаются со стороны монтажа. Диодный мост VS1 собран да дискретных выпрямительных диодах часто применяемых в импортной технике. Диодный мост (VD8-VD11) собран на диодах серии КД213 (в схеме указанны иные), диоды при впайки располагаются один над другим (столбиком), этот способ применён в целях экономии места.

Литература:

1. Радио №7 1996г. с.42-44. "ИК датчик в охранной сигнализации".

Данный вид освещения активно применяется в жилых, офисных и даже производственных помещениях. Наибольшую популярность сегодня получили системы контроля реализованные с помощью радиовыключателей, датчиков движения, контроллеров с пультами управления, смартфонов и компьютеров. Современные технологии позволяют управлять или на придомовом участке, будучи, находясь за сотни километров от них. Некоторые из них будут рассмотрены в статье.

Преимущество дистанционного управления

Использование устройств дистанционного управления позволяет решить ряд задач:

  • Экономно расходовать электроэнергию;
  • Сделать процесс включения/отключения светильников максимально комфортным;
  • Обезопасить свой дом или квартиру от посягательств злоумышленников (эффект присутствия).

Виды дистанционного управления

Дистанционное включение света бывает проводным и беспроводным, ручным и автоматическим, с возможностью манипулирования светом с устройств, работающих по принципу излучения и приема волн определенных частот: инфракрасным, микроволновым, радиочастотным, звуковым, ультразвуковым, голосовым (управление конкретными командами). В этой статье подробно остановимся на управлении освещением с помощью различного типа излучений, голосовых и звуковых команд.

Инфракрасное и радиоволновое управление светом с пульта

Инфракрасное управление освещением с использованием пульта применяется крайне редко. В основном подобные системы работают по принципу передачи сигнала по радиоканалу. Для возможности манипулирования световыми приборами с помощью ИК-луча в разрыв цепи подключается блок дистанционного управления освещением, например BM8049M. Он позволяет включать и выключатель лампу обычным пультом от телевизора. Для этого на блок наводят пульт, жмут любую клавишу (которая не используется для переключения каналов), после чего команда записывается в памяти и теперь контролировать включение света можно, не вставая с дивана.

Главные недостатки использования ИК-пультов дистанционного управления светом – необходимость в их точном наведении на приемник сигнала, так как они работают только в пределах прямой видимости, и малая дальность действия луча, но в этом случае можно использовать ретрансляторы.

Гораздо большее распространение получили системы управления светом с помощью пульта, в которых сигнал передается с устройства управления на контроллер, регулирующий процесс включения/выключения света на определенной радиочастоте.

Управление светом по радиоканалу более востребовано по нескольким причинам:

  • Возможность управления светом не только пульта, но также компьютера, смартфона и прочих устройств;
  • Радиус действия сигнала – около 100 метров при отсутствии препятствий, 15-25 метров при наличии заграждений;
  • Возможность установки усилителей сигнала и ретрансляторов для лучшей передачи команд с устройства управления.

Система дистанционного управления освещением по радиоканалу с помощью пульта состоит из:

  • Пульта;
  • Аккумулятора;
  • Контроллера дистанционного управления, подключаемого к сети и нагрузке.

Устанавливают контроллер в стену или стакан люстры (смотрите фото). Им можно управлять лампами накаливания, компактными и обычными люминесцентными, галогенными, светодиодными лампами, причем не только единичными светильниками, но и их группой.

Обзор блоков дистанционного управления освещением, китайского производства, при помощи пульта, по радиоканалу, видео:

Дистанционное управление светом с помощью инфракрасных и радиовыключателей

Инфракрасные выключатели – редкость на рынке светотехники, так как разумнее управлять светом с использованием радиоустройств. Один из самых популярных выключателей – "Сапфир" компании Ноотехника (Беларусь). Эта же компания выпускает множество устройств управления освещением по радиоканалу, в том числе упомянутые ниже. Управляется выключатель любым пультом, например, телевизионным или вручную. Принимает сигналы приемник, расположенный внутри устройства на сенсорной панели. Выключатель света с пультом дистанционного управления представлен на фото.

Обзор ИК-выключателя "Сапфир", видео:

Выключатель света с дистанционным управлением располагают в любом удобном для себя месте, силовые блоки – в распределительной коробке или стакане люстры.

Пример "привязки" блока управления освещением к радиовыключателю, видео:

Использование датчиков для управления освещением

На рынке светотехники широко представлены различные датчики движения, для дистанционного управления освещением. Наиболее распространенные из них – инфракрасные. Они представляют собой устройства, замыкающие или размыкающие цепь освещения при увеличении уровня инфракрасного излучения в зоне их "видимости". Как только в поле действия датчика попадает человек или животное, температура тела которых выше температуры фона – свет включается. Как только человек покидает зону действия датчика или несколько секунд находится в неподвижном положении – свет отключается. Монтируются датчики движения чаще всего в подъездах, над входной дверью, реже – внутри квартиры.

Недостатки и преимущества инфракрасных датчиков

К недостаткам использования датчиков движения относят возможность ложных срабатываний (реакция на теплый воздух, солнечные лучи), ухудшение работы на улице из-за атмосферных осадков, отсутствие срабатывания прибора в случае, когда одежда человека не пропускает инфракрасное излучение, постоянное выключение света через 10-15 секунд, как только двигательная активность снижается.

К преимуществам датчиков относят возможность контроля потребления электрической энергии и как следствие снижения денежных затрат, безопасность для здоровья человека, удобство использования.

Подключение датчиков движения не вызывает трудностей, очень часто встречается схема монтажа, представленная ниже. Для ее реализации необходим трехжильный провод, которым устройство управления освещением запитывается от сети и соединяется с нагрузкой. Фазный провод сети подключается к фазному проводу датчика. Нулевые проводники светильника, сети питания и датчика соединяются вместе. Светильник фазным проводом соединяется с оставшимся проводом датчика.

Выбор инфракрасных датчиков движения

При выборе ИК-датчиков обращают внимание на следующие параметры:

  • Место применения. Датчики выпускаются со степенями защиты от IP20 до IP 55 и бывают выстраиваемыми и навесными. Для использования в квартире выгоднее смотрится встраиваемый датчик, а степень защиты практически не играет роли. Для установки устройства на улице или в подъезде лучше выбрать модель с защитой от пыли и воды, устанавливаемую на кронштейне;
  • Максимальная дальность действия. ИК-датчики улавливают изменение температуры фона на расстоянии 10-20 метров. Те из них, которые планируется установить на улице должны иметь больший радиус "охвата". В помещении этот параметр ни к чему;
  • Угол обнаружения. В вертикальной плоскости угол обзора датчиков – 15-20 градусов, в горизонтальной – от 60 до 360 градусов;
  • Мощность нагрузки. Перед покупкой датчика надо знать мощность подключаемой к нему нагрузки и выбирать устройство по этим показателям с запасом.

Использование других датчиков движения для управления светом

Кроме инфракрасных регуляторов для управления освещением иногда применяются микроволновые, звуковые и ультразвуковые, а также комбинированные датчики.

Микроволновые датчики

Микроволновые датчики работают по принципу излучения и приема электромагнитных волн. В обычном режиме частота и длина излучаемых и отраженных от объектов волн одинакова. Когда в зону действия датчика попадает человек, эти параметры изменяются, после чего активируется механизм коммутации световой цепи. Преимущества микроволновых датчиков в том, что они являются высокоточными устройствами, отлично работают даже при плохой погоде, а недостатки – возможность ложных срабатываний, высокая цена, вредное излучение у датчиков с большим радиусом охвата.

Ультразвуковые датчики

Ультразвуковые датчики по принципу работы схожи с микроволновыми датчиками. Внутри этих устройств установлен генератор звуковых волн, частотой от 20 до 60 килогерц, которые излучаются и отражаются от объектов, расположенных в поле действия датчика. При попадании человека или животного в радиус охвата, частота приходящих на датчик звуковых волн меняется, что прибор сразу же регистрирует. Недостатки ультразвуковых датчиков: могут не среагировать на плавное перемещение, вызывают дискомфорт у животных. Преимущества датчиков: невысокая стоимость, работают в условиях повышенной влажности, изменения температуры, реагируют на движение независимо от того, одежда из какого материала на человеке.

Комбинированные датчики

Комбинированные датчики совмещают в себе несколько технологий обнаружения движения. Они могут использовать микроволновое и ультразвуковое излучение или инфракрасное и микроволновое. Такие устройства наиболее качественно выполняют поставленные перед ними задачи.

Звуковые датчики

Звуковые датчики реагируют на резкое изменение звука, уровень которого устанавливается путем изменения чувствительности датчика. Чаще всего включают и отключают свет хлопком в ладоши. Разновидностью звуковых датчиков можно считать и голосовые выключатели.

Голосовое управление светом

Голосовое управление световыми приборами в квартире реализуется с помощью голосовых датчиков-выключателей, часто используемых в системах "Умный дом", а также компьютеров или смартфонов на которых установлена специальная программа.

Выключатели света с дистанционным управлением (голосовые) делятся на два типа: с необходимостью настройки и без нее. В первом случае нужно обучить устройство командам активации, включения и выключения света, во втором случае все команды уже прописаны в памяти и указаны в инструкции, надо только использовать их для управления. Часто подобными выключателями можно управлять не только голосом, но и любым пультом. К таковым относятся "Жако" и "Серви". Ознакомиться с особенностями их работы можно на сайтах производителей.