» » Клинико диагностическое значение изменений показателей кщс. Кислотно-щелочное состояние (кщс)

Клинико диагностическое значение изменений показателей кщс. Кислотно-щелочное состояние (кщс)

21715 0

Поскольку показатели кислотно-основного состояния играют важную роль в лабораторной диагностике диабетических ком, врачу-эндокринологу необходимо хорошо представлять себе характер и принципы диагностики его возможных нарушений, Смещение кислотно-основного баланса в организме в кислую сторону называют ацидозом, в щелочную — алкалозом. Ацидоз или алкалоз, вызванный нарушением содержания углекислого газа в крови, называют респираторным или дыхательным.

Наиболее частая причина респираторного ацидоза - дыхательная недостаточность, приводящая к накоплению в крови углекислого газа, образующего угольную кислоту (Н2 СО3 ) при растворении в воде. Гиповентиляция и связанная с ней дыхательная недостаточность обычно являются результатом угнетения дыхательного центра в результате черепно-мозговой травмы, инфекции, токсического действия барбитуратов или наркотических средств, нарушения работы дыхательной мускулатуры в результате миастении или полиомиелита, а также острой и хронической легочной патологии. Респираторный алкалоз обычно является результатом гипервентиляции любой этиологии, снижающей содержание в крови углекислого газа и, соответственно, угольной кислоты.

К гипервентиляции могут приводить черепно-мозговые травмы, инфекции, новообразования головного мозга, тяжелая интоксикация в результате вызванного грамотрицательными бактериями сепсиса, печеночной недостаточности, лихорадки или передозировки салицилатов. В тех случаях, когда нарушение кислотно-основного состояния не является результатом нарушения дыхания, речь идет о метаболическом ацидозе или алкалозе.

В практике врача-эндокринолога чаще приходится сталкиваться с метаболическим ацидозом в результате избыточного накопления в крови кетоновых тел и (или) лактата. Выраженный метаболический ацидоз при этом обычно в той или иной степени компенсируется дыхательным алкалозом, развивающимся в результате гипервентиляции на фоне большого ацидотического дыхания Куссмауля. Кроме этого, развитие метаболического ацидоза может быть спровоцировано острой почечной недостаточностью, выраженной диареей, хронической сердечной недостаточностью, шоком любой этиологии, а также отравлением некоторыми веществами (салицилатами, метиловым спиртом, этиленгликолем и др.).

Метаболический алкалоз во врачебной практике встречается значительно реже метаболического ацидоза. Наиболее частыми причинами этого нарушения кислотно-основного состояния являются:

  • избыточное введение гидрокарбоната натрия (NaHCO3 );
  • выраженная потеря хлоридов при упорной рвоте;
  • усиленное выведение хлоридов и калия с мочой под действием салуретиков или глюкокортикоидов;
  • переливание больших количеств нитратной крови;
  • вторичный гиперальдостеронизм в результате гиповолемии различной этиологии;
  • эндогенный гиперкортицизм.

Характеристика основных показателей кислотно-основного состояния приведена в табл. 1. Поскольку анализ газового состава венозной крови не позволяет адекватно оценить дыхательную функцию легких, а получение артериальной крови для исследования сопряжено с определенными техническими трудностями и не всегда желательно, в реальной клинической практике для исследования кислотно-основного состояния часто проводят забор так называемой артериализованной, капиллярной крови.

Таблица 1

Характеристика основных показателей кислотно-основного состояния

Обозначение по­казателя, едини­ца измерения

Характеристика

Диапазон нормальных значений

Показатель активной реакции плазмы, комплексно характери­зующий кислотно-основное сос­тояние

рСО2 , мм рт. с.т.

Парциальное напряжение угле­кислого газа в артериальной кро­ви. Показатель отражает функци­ональное состояние дыхательной системы, его повышение указыва­ет на наличие респиратоного (ды­хательного) ацидоза, снижение - признак респираторного алкало­за. Для венозной крови нормаль­ные значения выше на 5-6 мм рт. ст.

рО2 , мм рт. ст.

Парциальное давление кислоро­да в артериальной крови отра­жает функциональное состоя­ние дыхательной системы

АВ, ммоль/л

Истинный бикарбонат, характе­ризует концентрацию бикарбонатных ионов (HCO3 ) - наибо­лее подвижный и наглядный по­казатель кислотно-основного состояния

SB, ммоль л

Стандартный бикарбонит концентрация бикарбонатых ионов, намеренная в стандартных условиях (при рСО2 = 40 мм рт. ст., t = 37° С и полном насыщении крови кислородом и во­дяными парами)

ВВ, ммоль/л

Сумма оснований всех буфер­ных систем крови (щелочных компонентов бикарбонатной, фосфатной, белковой и гемоглобиновой систем)

ВЕ, ммоль/л Сдвиг буферных оснований - показатель избытка или недостатка буферных мощностей по сравнению с нормальными для данного больного. Это сумма всех основных компонентов буферных систем крови, приведенной к стандартным условиям. Она показывает, какое количество ммоль сильного основания следует добавить (или условно удалить) для достижения pH = 7,4 при рСО2 = 40 мм рт. ст. и t = 37°С от -2 до +2

Капиллярную кровь получают, пунктируя скарификатором мягкие ткани мочки уха или подушечку одного из пальцев кистей верхних конечностей. С целью артериализации крови перед забором мочку уха или палец кисти энергично массируют в течение 5 минут. Однако при интерпретации результатов, полученных в ходе исследования такой крови, следует учитывать, что при выраженных нарушениях газообмена и гемодинамики эти показатели лишь приблизительно отражают реальную ситуацию.

При оценке кислотно-основного состояния используется эквилибрационный микрометод Аструпа с интерполяционным расчетом рСО2 и методы с прямым окислением СО2. Микрометод Аструпа основан на наличии физической взаимосвязи между компонентами, регулирующими равновесие кислот и оснований в организме. При использовании этого метода в крови непосредственно определяют pH и рСО2 , а остальные показатели рассчитывают по номограмме Сиггаарда-Андерсена (1960). Современные микроанализаторы определяют все показатели кислотно-основного состояния крови в автоматическом режиме.

Для оценки кислотно-основного состояния наиболее информативны pH крови, парциальное давление углекислого газа (рСО2 ), уровень стандартного бикарбоната (SB) и сдвиг буферных оснований (BE). Изменения, типичные для различных видов нарушения кислотно-основного состояния приведены в табл. 2. Следует подчеркнуть, что pH крови изменяется только при выраженном нарушении кислотно-основного состояния, когда компенсаторные возможности химических и физиологических буферных систем крови оказываются несостоятельными. Умеренные нарушения этого состояния протекают бессимптомно. Например, большое ацидотическое дыхание Куссмауля развивается при снижении pH до 7,2. Поэтому диагностика умеренных нарушений кислотно-основного состояния базируется, главным образом, на основании результатов исследования газового состава крови, уровней бикарбонатов (АВ, SB, ВВ) и сдвига BE.

Таблица 2

Возможные нарушения кислотно-основного состояния

Показатель (норма)

Метаболи­ческий ацидоз

Метабо-ли­ческий алкалоз

Респира-тор­ный ацидоз

Респира-тор­ный алкалоз

pH крови (7,35-7,45)

Снижено или в норме

Повышено или в норме

Снижено или в норме

Повышено пли в норме

Парциальное давление СО 2 (35-45 мм рт. ст.)

Снижено или в норме

Повышено или в норме

Повышено

Стандартный бикарбонат, SB (25-28 ммоль/л)

Повышено

Повышено или в норме

Снижено или в норме

Сдвиг буфер­ных основаий, BE (от -2 до +2 ммоль/л)

Негативный

Позитивный

Позитивный

Негативный

В связи с тем, что нарушения кислотно-основного состояния часто носят комбинированный характер, при интерпретации показателей следует учитывать логические аксиомы, предложенные Ассоциацией кардиологов США и описывающие взаимосвязи между уровнем рСО2 , pH и изменением концентрации буферных оснований (Сумин С.А., 2005).

1 аксиома. Изменение рСО2 крови на 10 мм рт.ст. обусловливает реципрокное изменение pH на 0,08.

Поэтому, если повышение рСО2 на 10 мм рт. ст. выше нормы (40 мм рт. ст.) сопровождается снижением pH с 7,4 до 7,32, эти изменения кислотно-основного состояния носят чисто респираторный характер. Исходя из этого правила, рСО2 и pH крови должны быть взаимосвязаны следующим образом:

рСО 2 , мм рт. ст.

Изменение pH на величину, отличающуюся от расчетной, свидетельствует о наличии не только респираторной, но и метаболической причины нарушения кислотно-щелочного состояния.

2 аксиома. Изменение pH на 0,15 является результатом изменения концентрации буферных оснований на 10 ммоль/л.

Это правило отражает взаимосвязь между сдвигом буферных оснований (BE) и pH крови. Если при нормальном парциальном давлении СО2 (40 мм рт. ст.) pH 7,25, а BE = -10 ммоль/л, это свидетельствует о чисто метаболическом характере ацидоза и отсутствии его респираторной компенсации. Данная взаимосвязь может быть проиллюстрирована следующим образом:

Эти аксиомы позволяют выявить комбинированный характер нарушений кислотно-основного баланса, однако не позволяют решить, какое из нарушений первично, а какое - результирующая компенсаторная реакция.

3 аксиома. Дефицит (избыток) оснований в организме может быть рассчитан по следующей формуле: общий дефицит оснований в организме (ммоль/л) = BE, определенный на основе второго правила, (ммоль/л) х 1/4 массы тела (кг).

Эта аксиома основана на предположении, что внеклеточный объем, включая плазму (т.е. водный объем распределения гидрокарбоната), составляет 1/4 массы тела.

Анализ показателей кислотно-основного баланса позволяет не только выявить его нарушения, но и оценить их тяжесть. Классификации различных нарушений кислотно-основного баланса по степени выраженности представлены в табл. 3-6. При составлении этих таблиц использовались средние сводные данные (Сумин С.А., 2005).

Оценка показателей субкомпенсированного метаболического ацидоза, приведенных в табл. 3, позволяет выявить умеренный дефицит оснований (BE не ниже -9 ммоль /л) на фоне компенсаторного респираторного алкалоза (снижение рСО2 до 28 мм рт. ст.) и умеренного снижения уровня оснований (АВ, SB, ВВ), При декомпенсации кислотно-основного состояния выраженный дыхательный алкалоз (рСО2 менее 28 мм рт. ст.) уже не может компенсировать значительное снижение уровня щелочных радикалов (АВ, SB, ВВ), что приводит к сильному дефициту оснований (BE менее -9).

При сопоставлении показателей субкомпенсированного алкалоза (см. табл. 4) обращает на себя внимание незначительный избыток основании (АВ, SB, ВВ) по сравнению с состоянием, характерным для компенсации. При декомпенсации алкалоза происходит нарастание избытка оснований (АВ, SB, ВВ) и значительный позитивный сдвиг буферных оснований (BE). Причем эти изменения развиваются на фоне существенного нарастания гиперкапнии - увеличения парциального давления СО2 отражающего развитие компенсаторного дыхательного ацидоза. Попытка борьбы с этой гиперкапнией путем искусственной вентиляции легких будет ошибкой, поскольку накопление СО2 носит компенсаторный характер.

При анализе показателей, приведенных в таблице 5, обращает на себя внимание следующее. При субкомпенсированном респираторном ацидозе имеется явный избыток СО2 в крови (рСО2 повышено до 55 мм рт. ст.). При этом часть углекислого газа превращается в бикарбонаты, на что указывает умеренное повышение АВ, SB и ВВ, а также позитивное значение BE (до -3,5 ммоль/л). При декомпенсации респираторного ацидоза гиперкапния значительно усиливается (рСО2 достигает 70 мм рт. ст.). При этом продолжает развиваться частичная компенсация кислотно-основного состояния за счет нарастания метаболического алкалоза, который проявляется повышением уровня бикарбонатов (АВ, SB, ВВ) и позитивным сдвигом буферных оснований (повышение BE до -12).

Таблица 3

Лабораторные показатели, характерные для метаболического ацидоза различной степени выраженности

Таблица 4

Лабораторные показатели, характерные для метаболического алкалоза различной степени выраженности

Таблица 5

Лабораторные показатели, характерные для респираторного ацидоза различной степени выраженности

В ходе выработки тактики ведения больного с респираторным ацидозом следует учитывать, что искусственная вентиляция легких в режиме нормовентиляции показана только при декомпенсированном дыхательном ацидозе, в случае субкомпенсации кислотно-основного состояния достаточно проведения мероприятий направленных на устранение причины респираторного ацидоза.

Гипервентиляция, приводящая к развитию субкомпенсированного алкалоза (табл. 6), приводит к уменьшению парциального давления СО2 в крови, а также параллельному снижению уровня бикарбонатов (АВ, SB, ВВ). Показатель сдвига буферных оснований BE остается в пределах нормы. При декомпенсации состояния продолжается дальнейшее вымывание СО2 из плазмы крови (рСО2 снижается до 18 мм рт, ст.). Одновременно нарастают тканевая гипоксия и метаболический ацидоз, приводящий к парадоксальному изменению pH и сдвигу буферных оснований в сторону ацидоза.

Таблица 6

Лабораторные показатели, характерные для респираторного алкалоза различной степени выраженности

Для получения целостного представления о характере метаболических расстройств показатели кислотно-основного состояния следует рассматривать в тесной взаимосвязи с показателями электролитного обмена. Между электролитным обменом и кислотно-основным состоянием существуют тесные взаимосвязи, подчиняющиеся физико-химическим законам электронейтральности, изоосмолярности и постоянства pH биологических жидкостей. Согласно закону электронейтральности, в водном растворе суммы концентраций катионов и анионов, выраженные в мэкв/л, должна быть равны. Электронейтральность плазмы наглядно представлена в диаграмме Гембла (Gemble, 1950) на рис. 1.

Рис. 1. Диаграмма Гембла. Сумма диссоциированных веществ (катионов и анионов) в плазме крови

В норме суммарная концентрация катионов плазмы крови составляет 153 мэкв/л, из них на долю натрия приходится 142 мэкв Ал. Остальная часть приходится на малые плазменные катионы калия, кальция и магния (11 мэкв/л). Согласно закону электронейтральности, сумма концентрации анионов также должна составлять 153 мэкв/л. Большая часть анионов плазмы - это анионы хлора (101 мэкв/л), бикарбонаты (24 мэкв/л), и анионы белка (17 мэкв/л). На остаточные анионы (сульфаты, фосфаты и др.) приходится около 11 мэкв/л.

Если предположить, что суммы концентрации малых плазменных анионов и остаточных анионов равны, электролитное равновесие может быть представлено следующим образом:

- + [ВВ],

где - концентрации натрия, мэкв/л;

[Сl¯] концентрация хлора, мэкв/л;

[ВВ] - сумма оснований всех буферных систем крови.

При отсутствии специальной аппаратуры для определения показателей кислотно-основного состояния данная формула может быть использована для косвенного определения его показателей. Сумма оснований всех буферных систем крови в этом случае рассчитывается, как разность между содержанием в крови натрия и хлора:

[ВВ] - - [Сl¯].

Поскольку сумма малых плазменных катионов - величина довольно стабильная и примерно равная сумме остаточных анионов, такой расчет вполне допустим. При использовании этой формулы следует учитывать, что для одновалентных ионов, например натрия хлора (КаСl) или бикарбоната (HCO3 ), один мэкв/л равен одному ммоль/л.

Кроме того, при отсутствии микроанализатора примерный расчет BE может быть проведен по следующей формуле:

- [ВВ] - 42 = - [Сl¯] - 42

При использовании этих формул следует учитывать, что сумма буферных оснований существенно зависит от уровня белка крови, поэтому при гипопротеинемиях возможно уменьшение этого показателя, не связанное с развитием ацидоза.

Жукова Л.А., Сумин С.А., Лебедев Т.Ю.

Неотложная эндокринология

р Н а р т е р и а л ь н о й к р о в и

АЦИДОЗ (меньше 7.4) АЛКАЛОЗ (больше 7.4)

дыхательный недыхательный дыхательный недыхательный

рСО 2 >40 pCO 3 < 24 (BE <0) pCO 2 <40 HCO 3 > 24 (BE >0)

почечная легочная почечная легочная

компенсация компенсация компенсация компенсация

HCO 3 > 24 (BE >0) pCO 2 <40 pCO 3 < 24 (BE <0) рСО 2 >40

Нарушения кислотно-щелочного состояния (КЩС ) являются в большинстве случаев следствием серьезного патологического нарушения и редко имеют самостоятельное значение. Исследование газового состава артериальной крови (ГАК) - незаменимый метод диагностики.

♦ Обычно pH измеряют прямым методом при помощи специального стеклянного электрода, который имеет мембрану, проницаемую для H+.

♦ Концентрация ионов бикарбоната - HCO 3 - измеряется бикарбонатным электродом или может быть получена расчетным путем.

♦ CO 2 обычно измеряется прямым методом при помощи СО 2 -электрода.

Бикарбонатная система участвует в регуляции pH всех компартментов внутренней среды, обладая возможностью вмешиваться в кислотно-щелочное состояние на двух уровнях: концентрация HCO 3 - регулируется почками, a CO 2 – легкими: H + + HCO 3 - → H 2 CO 3 → H 2 O + CO 2

Точное значение pH среды может быть рассчитано при помощи уравнения Гендерсона-Хассельбаха :

pH = pK + log

[основание] / [кислота] = pK + log /

pK представляет собой специфичную для данного буфера константу (например, для бикарбонатной системы при 37°С pK составляет 6,1).

Поскольку концентрация HCO 3 - регулируется почками, а выведение CO 2 - легкими, уравнение принимает следующий вид: pH = константа ПОЧКИ / ЛЕГКИЕ

Терминологические замечания: ацидоз / ацидемия и алкалоз / алкалемия. Суффикс "емия" ("aemia") означает "определяемый в крови".

Нормальные значения газового состава крови
Показатель Границы нормы Единицы Примечания
pH 7,35 - 7,4 - 7,45 (относительная величина)
PaCO 2 4,8 - 5,3 - 5,9 36 - 40 - 44 кПа мм рт. ст.
PaO 2 11,9 - 13,2 90 - 100 кПа мм рт. ст. На уровне моря FiO 2 = 21%, становится ниже с повышением высоты, повышается при кислородотерапии
HCO 3 - (актуальный бикарбонат - AB) 22 - 24 - 26 ммоль/л Нормальные значения могут варьировать при изменении PCO 2
Стандартный бикарбонат (SB) 22 - 24 - 26 ммоль/л после его стандартизации (эквилибровка) по значению CO 2 40 мм рт. ст. (5,3 кПа)
Избыток оснований (BE) -2,0 - +2,0 ммоль/л При отрицательном значении BE говорят о дефиците оснований

Бикарбонатная буферная система играет наиболее важную роль в поддержание постоянства кислотно-щелочного состояния и может быть оценена при анализе газового состава крови. Легкие способны регулировать выведение CO 2 , а почки экскрецию или задержку HCO 3 - . Это взаимодействие позволяет с высокой точностью поддерживать и регулировать соотношение кислот и оснований в организме.

Каково значение показателей кислотно-щелочного состояния (КЩС) и газового состава артериальной крови (ГАК)?
pH Общие кислотно-щелочные свойства среды. Указывает, имеется ли у пациента ацидемия или алкалемия.
PCO 2 Респираторный компонент
PO 2 Характеризует оксигенацию и не имеет отношения к кислотно-щелочному состоянию (КЩС). В общих чертах является маркером тяжести заболеваний легких, но не поддается интерпретации при неизвестном значении FiO 2 . PO 2 может быть выше 650 мм рт. ст. (85 кПа) при нормальной функции легких на фоне FiO 2 = 100%. Прогнозируемый уровень PaO 2 при нормальной функции легких может быть рассчитан при помощи уравнения альвеолярного газа. В грубом приближении значение прогнозируемого PaO 2 может быть рассчитано как FiO 2 (%) х 6 мм рт. ст. (например, при вентиляции пациента с FiO 2 = 40% PaO 2 должно составить 6 х 40 = 240 мм рт. ст.). Если реальное значение ниже расчетного, имеет место внутрилегочное шунтирование крови (кровь не проходит через вентилируемые альвеолы и поступает в аорту неоксигенированной.). Чем тяжелее поражение легких, тем ниже будет значение PaO 2 при данном уровне FiO 2 .
HCO 3 - (актуальный бикарбонат) Ренальный компонент компенсации.
Стандартный бикарбонат Дополнительный показатель, характеризующий ренальный (метаболический) компонент в нарушениях кислотно-щелочного состояния (КЩС). Имеет большую ценность, чем актуальный бикарбонат, поскольку корректирован по отношению к измененному значению PCO 2 .
Избыток оснований Соответствует количеству сильной кислоты (или основания в случае дефицита оснований), необходимому для титрования 1 литра крови и возвращении значения pH к значению 7,4 при PCO 2 = 5,3 кПа и температуре 37°С. Дополнительный показатель, характеризующий ренальный (метаболический) компонент нарушения. Информационная ценность близка к таковой стандартного бикарбоната (нормальное значение около 0 ммоль/л, для стандартного бикарбоната - 24 ммоль/л).

Дыхательная система способна осуществлять быструю компенсацию нарушений кислотно-щелочного состояния (КЩС ) (в течение нескольких минут). Метаболическая компенсация (почки, система бикарбоната) запускается в течение часов или нескольких дней. Взаимодействие этих компенсаторных систем позволяет точно регулировать кислотно-щелочного состояние (КЩС ). Их цель состоит в поддержании внеклеточного значения pH на уровне 7,4, который является оптимальным для протекания большинства метаболических процессов, например, химических реакций, катализируемых ферментами, и переноса веществ через клеточные мембраны.

Патологические процессы, такие, как тканевая гипоксия, почечная недостаточность, гиповентиляция ведут к нарушению кислотно-щелочного баланса. При нарушении со стороны одной из регуляторных систем другая будет пытаться компенсировать изменения кислотно-щелочного состояния (КЩС ) и привести pH к оптимальному значению. Нарушения кислотно-щелочного состояния (КЩС) и некоторые их причины представлены в таблице "Нарушения кислотно-щелочного состояния ".

Нарушения кислотно-основного состояния
Респираторный ацидоз PaCO 2 повышено Развивается при неадекватной вентиляции, когда продукция CO 2 превышает его элиминацию. Возможные причины: обструкция дыхательных путей, депрессия дыхания (вследствие действия препаратов, ЧМТ, заболеваний дыхательной системы и т.д.)
Респираторный алкалоз PaCO 2 снижено Возникает при гипервентиляции. Гипервентиляция может быть следствием ответа на гипоксемию и включения гипоксического респираторного драйва. Способность легких к выведению CO 2 значительно выше, чем к абсорбции O 2 , в связи с чем при заболеваниях легких часто наблюдается гипоксемия на фоне нормального или пониженного уровня CO 2 . Причиной респираторного алкалоза может быть ИВЛ с высоким минутным объемом вентиляции.
Метаболический ацидоз HCO 3 - снижен (дефицит оснований) Множество этиологических факторов: ♦ Потери бикарбоната через ЖКТ или хроническое поражение почек (нормальный анионный интервал) ♦ Поступление дополнительных количеств неорганических кислот, например, при диабетическом кетоацидозе, лактат-ацидозе, связанном с тканевой гипоксией, передозировка салицилатов, отравление этиленгликолем и прочими ядами, снижение экскреции кислот при почечной недостаточности (повышение анионного интервала).
Метаболический алкалоз HCO 3 - повышен (избыток оснований) Возникает при потерях желудочного содержимого (например, пилоро-стеноз) и терапии диуретиками. Метаболический алкалоз часто сопровождается снижением хлоридов (Cl -) сыворотки.
Смешанный ацидоз PaCO 2 повышено, HCO 3 - снижено Крайне опасное нарушение. Может развиваться при таких тяжелых расстройствах, как септический шок, полиорганная недостаточность, остановка кровообращения.

Компенсаторные механизмы пытаются вернуть pH к нормальному значению, несмотря на сохранение отклонений и PCO 2 до коррекции первичного нарушения. Компенсация нарушений кислотно-щелочного состояния (КЩС ) не должна носить характер избыточной. Например, при метаболическом ацидозе наблюдается падение значения pH < 7,4. При адекватной респираторной компенсации pH будет стремиться к нормальному значению, но не превысит 7,4.

Вот несколько подсказок, которые помогут Вам дифференцировать первичное нарушение и компенсаторный эффект.

Первичное нарушение (метаболического или респираторного характера) по типу параллельно отклонению pH: при снижении pH имеет место ацидотическое нарушение, при повышении pH развивается алкалоз. Компенсаторный эффект (респираторный или метаболический) имеет противоположное направление. Механизмы компенсации будут отклонять pH в сторону нормального значения, при этом полная компенсация достигается редко (восстановление нормального исходного значения), а избыточная компенсация - никогда.

К примеру, если Вы обнаружили сочетание метаболического ацидоза и респираторного алкалоза, значение pH подскажет, какое из нарушений носит первичный, а какое - компенсаторный характер. Если значение pH снижено, первичным дефектом является метаболический ацидоз с респираторной компенсацией. При повышении pH в роли первичного нарушения выступает респираторный алкалоз с метаболической компенсацией.

Пошаговая интерпретация газового состава крови
Шаг 1 Общая картина без отклонений, имеется ацидемия или алкалемия? pH < 7,35 = ацидемия [... перейдите к шагу 2] pH > 7,45 = алкалемия [... перейдите к шагу 5]
Шаг 2 Если наблюдается ацидемия: Характер первичного нарушения: метаболический, респираторный или смешанный? CO2 повышен = респираторный ацидоз [... шаг 3] Бикарбонат снижен, значение BE отклонено в отрицательном направлении = метаболический ацидоз [... шаг 4]
Шаг 3 Если имеет место респираторный ацидоз: Имеется метаболическая компенсация? CO 2 повышено (респираторный ацидоз), но метаболический компонент изменяется в противоположном направлении (BE или стандартный бикарбонат (SB) повышены, как при метаболическом алкалозе), что говорит о метаболической компенсации первичных нарушений кислотно-щелочного состояния (КЩС ).
Шаг 4 Если имеет место метаболический ацидоз: Имеется ли респираторная компенсация? Значение BE принимает отрицательное значение (метаболический ацидоз); респираторный компонент изменяется в противоположном направлении (CO 2 снижен - респираторный алкалоз), что говорит о респираторной компенсации.
Шаг 5 Если наблюдается алкалемия: Характер первичного нарушения: метаболический или респираторный? Первичное нарушение имеет то же направление, что и изменения pH (в сторону алкалоза). Респираторный алкалоз сопровождается снижением CO 2 . При метаболическом алкалозе CO 2 повышается и значение BE становится положительным.
Шаг 6 При наличии респираторного или метаболического алкалоза: Есть ли элементы компенсации? Изменения равнозначны вышеуказанным.
Шаг 7 Обратите внимание на оксигенацию Соответствует ли значение PaO 2 установленному FiO 2 ? Уровень оксиге-нации ниже прогнозированного может указывать на заболевание легких, шунтирование крови или ошибочный забор образца венозной крови (в последнем случае PaO 2 обычно < 40 мм рт. ст., сатурация < 75%). Способность легких к элиминации CO 2 превышает их резерв в отношении оксигенации. В связи с этим заболевания легких часто сопровождаются гипоксемией на фоне нормального или сниженного значения PCO 2 . Значительное повышение CO 2 сопровождается параллельным снижением O 2 .
Шаг 8 Суммируйте Ваши наблюдения Например: наблюдается метаболический ацидоз (поскольку pH снижен, BE имеет отрицательное значение) с респираторной компенсацией (поскольку параллельно снижено значение PCO 2).
Шаг 9 Попытайтесь установить причину нарушений

Определение водородного показателя (рН) крови проводят электрометрическим способом с применением специального стеклянного электрода, чувствительного к ионам водорода.

Кислотно-основное состояние крови связано с содержанием в ней углекислого газа. Для установления уровня напряжения углекислого газа и кислорода в крови применяют эквилибрационную методику Аструпа или электрод Северингхауса. Значения, характеризующие изменения кислотно-основного состояния, рассчитывают посредством составления номограммы.

Сейчас массово выпускают приборы, определяющие рН, напряжение С0 2 и 0 2 в крови; расчеты производятся с помощью микрокомпьютера, входящего в состав прибора. В настоящее время для определения кислотно-щелочного состояния наиболее широко применяется так называемая методика Аструпа.

Для определения кислотно-основного состояния крови берется артериальная или капиллярная (из кончика пальца) кровь. Следует отметить, что наиболее высокое постоянство кислотно-щелочных показателей отмечается все же в артериальной крови.

У здорового человека рН артериальной крови составляет 7,35-7,45, т.е. кровь имеет слабощелочную реакцию.

Снижение величины рН свидетельствует о сдвиге реакции крови в кислую сторону, что называется «ацидоз» (рН < 7,35), а увеличение данного показателя свыше 7,45 - о сдвиге реакции крови в щелочную сторону (алкалозе).

Сдвиги рН более чем на 0,4 (рН менее 7,0 и более 7,8) расцениваются как несовместимые с жизнью.

Изменения рН, отличные от нормы, обозначаются как:
1) субкомпенсированный ацидоз (рН 7,25-7,35);
2) декомпенсированый ацидоз (рН < 7,25);
3) субкомпенсированный алкалоз (рН 7,45-7,55);
4) декомпенсированный алкалоз (рН > 7,55).

Немаловажно учитывать при оценке кислотно-основного состояния организма РаС02, т.е. напряжение углекислого газа в артериальной крови. В норме данный показатель составляет в среднем 40 мм рт. ст. (от 35 до 45), а более значительные отклонения от нормы являются признаком дыхательных нарушений.

Метаболический алкалоз или ацидоз определяется в том числе по избытку или недостаточности буферных оснований (Buffer Base, ВВ) в крови. У здорового человека В В = 0, а допустимые пределы колебаний составляют ±2,3 ммоль/л.

Такой показатель как «стандартные бикарбонаты» (SB) отражает концентрацию бикарбонатов в крови при стандартных условиях (рН = 7,40; РаС02 = 40 мм рт. ст.; t = 37 °С; S02 = 100%). «Истинные, или актуальные бикарбонаты» (АВ) отражают состояние бикарбонатного буфера в условиях конкретного организма, в норме совпадают со «стандартными» и составляют 24,0 ± 2,0 ммоль/л.

Показатели SB и АВ снижаются при нарушение обмена веществ со сдвигом реакции крови в кислую сторону и уменьшаются при сдвиге реакции крови в щелочную сторону.

Если лабораторные данные свидетельствуют о наличии метаболического ацидоза, это может быть признаком кетоацидоза, сахарного диабета, кислородного голодания (гипоксии) тканей, шокового состояния, а также ряда других патологических состояний.

Причиной метаболического алкалоза может стать неукротимая рвота (с большой потерей кислоты с желудочным соком) или чрезмерное употребление в пищу продуктов, вызывающих ощелачивание организма (растительных, молочных).

8. Определение осмотической резистентности эритроцитов Работа 3.5 – стр. 82

Определение осмотической резистентности эритроцитов (осмотической стойкости): используют набор гипотонических растворов NaCl (концентрация соли ниже 0.9%), помещают в них эритроциты исследуемой крови и отмечают концентрацию раствора, в котором (а) начинается гемолиз отдельных эритроцитов (в норме 0.48% NaCl и (б) происходит полный гемолиз всех эритроцитов (в норме 0.33% NaCl). Например, осмотическая стойкость эритроцитов уменьшается при сфероцитозе и увеличивается при талассемии.

9. Исследование буферных свойств сыворотки крови (опыт Фриденталя). Учебник

Показатель рН – 7.35 – 7.4 (отрицательный логарифм концентрации водородных ионов) – влияет на ход всех биохимических реакций в организме. Сдвиг рН в кислую сторону называется ацидозом, сдвиг в щелочную сторону – алкалозом . Регуляция рН: (1) В крови имеются буферные системы, которые могут связывать водородные и гидроксильные ионы и, таким образом, уменьшать колебания рН (доли секунды); (2) дыхательная система – удаление СО 2 легкими (несколько минут); (3) выделительная функция почек – выведение кислых и щелочных продуктов обмена; самый медленный механизм (часы, дни), но самый мощный. Буферные системы крови : (1) бикарбонатный буфер (угольная кислота и бикарбонат натрия) – буферная система крови; (2) фосфатный буфер (гидрофосфат и дигидрофосфат натрия) – буферная система крови, почечных канальцев, а также внутриклеточная буферная система многих тканей; (3) гемоглобиновый буфер (восстановленный гемоглобин ННв и калиевая соль оксигенированного гемоглобина КНвО 2) – буферная система эритроцитов, самая мощная (75% общей буферной емкости); (4) белковый буфер (амфолитные свойства белков) – буферная система крови, а также внутриклеточная буферная система.

В амбулаторной практике иногда назначается анализ на pH крови. Здоровому человеку мало что говорит это аббревиатура, но, например, пациенту с тяжелым течением сахарного диабета обязательно нужно контролировать это состояние, которое еще называется КЩР, КЩБ, или щелочной баланс. Официально это состояние именуется кислотно-щелочным равновесием плазмы. Что это за анализ, о чём говорит pH крови человека, и каковы значения этого равновесия в норме?

Что такое рН и какова ее норма?

Любую живую материю отличает от мертвой постоянство внутренней среды организма, которая отличается от внешней среды. В каждом организме постоянно протекает множество различных нормальных процессов, которые в совокупности именуются метаболизмом. Любой метаболизм состоит из процессов анаболизма, или роста, и катаболизма, или процессов распада и выведения из организма различных вредных веществ.

Жизнь млекопитающих невозможно без процессов тканевого дыхания. В ткани доставляется кислород и питательные вещества, и выводится из них углекислый газ. Транспорт этих веществ совершается в крови, и она является важнейшей внутренней средой организма. В плазме постоянно существуют различные кислоты, которые отдают ионы водорода, или протоны. Одновременно в крови содержатся и щелочные субстанции — основания, или акцепторы, «приемники» протонов.

Постоянное соотношение кислых и щелочных компонентов плазмы, которое изменяется, количественно может быть выражено концентрацией свободных протонов. Это количество ионов и называется рН, и выражается в моль/л. Для удобства расчетов берётся не сама эта концентрация, а отрицательный десятичный логарифм этой концентрации. Поэтому можно принимать уровень кислот и щелочей плазмы за безразмерную величину.

Какова кислотность крови? И какие значения свидетельствуют о нарушении этой нормы? Удивительно, но pH плазмы человека в течение всей его жизни может меняться в чрезвычайно узких пределах, это — важный показатель здоровья. У здорового человека средняя величина pH составляет 7,38-7,40. Колебания концентрации ионов водорода могут быть немного шире, например, от 7,37 до 7,44.

В том случае, если у человека определить pH плазмы, то они ни в коем случае не могут быть меньше 6,8, и больше 7,8. Превышение этих границ как в меньшую, кислую сторону, так и в щелочную, или сторону повышения, несовместимые с жизнью.

От чего зависит сохранность рН?

Рассмотрим, какие системы отвечают за соблюдение этого постоянства. Эти системы называются буферными системами, поскольку они позволяют или забирать, или отдавать в кровь протоны, без каких-либо резких колебаний pH, тем самым компенсируя возможные метаболические нарушения сразу, по мере их возникновения.

К основным буферным системам организма относятся следующие:

  • бикарбонатная система, которая «работает» на угольной кислоте и ее соли – бикарбонате натрия;
  • гемоглобиновая буферная система, использующая белки.

В том случае, когда гемоглобин присоединяет кислород в легких, он проявляет более сильные кислые свойства, а когда гемоглобин отдает кислород в тканях, то его кислотные свойства ослабевают, и он становится акцептором протонов.

Кроме двух буферных систем, поддерживать в норме биохимический анализ крови позволяет дыхание. В течение нескольких минут (2 – 3) лёгкие компенсируют любое физиологическое изменение pH крови, доводя его до нормы. Системам бикарбоната и гемоглобина вследствие высокой буферной емкости для этого нужно всего лишь около половины минуты. Но лёгкие, благодаря выделению во внешнюю среду углекислого газа, быстро ликвидируют опасность закисления внутренней среды организма.

Кроме этого, еще одним важным механизмом является образование мочи. В почках протекает сложный процесс изменения концентрации карбонатного буфера. Почки являются самым медленным, но надежным механизмом: для нормализации показателей кислотности в плазме им требуется около половины суток.

В основном, почки используют обратное всасывание ионов натрия и секрецию протонов в почечных канальцах. Почки являются мощным и эффективным механизмом вывода лишней кислотности из организма. Разница между концентрацией рН в моче и в плазме может достигать соотношения 800: 1.

Для того чтобы определить pH крови, в современной лаборатории достаточно воспользоваться артериальной кровью из капилляров, то есть просто проколоть палец пациенту. Поскольку расшифровка состояния и состава КЩС как взрослого человека, так и ребенка является одним из важнейших показателей гомеостаза, то в анализы входят следующие показатели:

  • величина рН;
  • напряжение, или парциальное давление углекислого газа в плазме;
  • концентрация бикарбоната;
  • концентрация буферных оснований;
  • избыток оснований.

В клинике существуют различные способы определения этих параметров. Мы не будем подробно останавливаться на тонкостях и особенностях диагностики различных показателей на кислотность, а остановимся на причинах, которые могут привести к изменениям кислотно-щелочного равновесия, связанные с различными заболеваниями, вызванные нарушениями в организме, и превышающими физиологическую норму.

Ацидоз и алкалоз: когда анализ отличается от нормы

В том случае, если речь идет о повышении кислотности, то используется термин «ацидоз», от латинского перевода «acidum» — кислота. Если же сдвиг равновесия наблюдается в щелочную сторону, или в сторону повышения pH, тогда это состояние называется «алкалоз», от соответствующего химического наименования щелочей и оснований.

Ацидоз и алкалоз являются частым следствием различных хронических заболеваний сердца, сосудов, и особенно легких и почек, которые принимают участие в сохранение равновесия и минимизации отклонений рН.

В клинике очень важно отличать респираторный и метаболический алкалоз и ацидоз. Каждый из нас может самостоятельно, прямо сейчас, ощутить на себе симптомы респираторного алкалоза: для этого нужно очень глубоко и часто подышать в течение хотя бы 15 — 20 секунд. Появятся неприятные симптомы «отравления» организма кислородом, и падение парциального давления углекислоты плазмы: это головокружение, чувство онемения лица и пальцев.

Но гораздо чаще в клинике развивается состояние метаболического ацидоза, или закисления организма. В этом может быть виновато свободнорадикальное окисление, перекисное окисление липидов, сердечная недостаточность, различные хронические заболевания. Основными причинами отклонения ph в сторону метаболического ацидоза являются следующие состояния:

  • хроническая гипоксия;
  • расстройство функции печени по обезвреживанию продуктов распада белков, и накопление кислых соединений – основное заболевание – хроническая печеночная недостаточность;
  • при хронической , и при выраженном снижении уровня белка плазмы. Эти состояния приводит к истощению буферных систем;
  • также причины повышенного ацидоза за счёт увеличения концентрации ацетона и кетоновых тел наблюдается у пациентов с тяжелым сахарным диабетом при повышении кислотности плазмы;
  • при длительной лихорадке;
  • вследствие алкогольной интоксикации;
  • при ожоговой болезни;
  • при массивных травмах, особенно при краш-синдроме, или при синдроме длительного раздавливания.

При краш — синдроме, после освобождения конечности от длительного сдавливания, в центральный кровоток поступает большое количество миоглобина, который появился в результате травматического рабдомиолиза, или мышечного распада. Этот миоглобин способен «засорять» мембраны почечных клубочков, и это приводит к развитию острой почечной недостаточности, и к нарушению экскреции протонов в мочу.

В случае метаболического ацидоза снижается pH плазмы артериальной и венозной крови, и количество гидрокарбоната, повышается концентрация ионов водорода, и в качестве компенсации снижается парциальное давление углекислого газа.

Мы разобрали состояния, при котором pH ниже нормы. Но при исследовании можно отметить иногда и повышение pH, или снижение концентрации протонов. Чтобы не путаться, вспомним, что показателем является отрицательная величина десятичного логарифма, то есть имеется обратно пропорциональная связь: при увеличении концентрации протонов, или ионов водорода, или при закислении, рН снижается, и наоборот.

У пациента велик шанс встретиться с метаболическим алкалозом, если у него наблюдаются следующие состояния:

  • у пациента существует избыточная потеря кислот из организма, или избыточное накопление основных соединений. Чаще всего в клинике встречаются рвота, неукротимая и многократная, при которой теряются протоны и хлор, входящий в состав желудочного сока;
  • прием большого количества мочегонных;
  • потеря калия при выраженных поносах;
  • избыточное введение щелочных растворов с целью компенсировать ацидоз;
  • переливание большого объёма донорской крови. В ее состав для консервации входит лактат, или цитрат, которые приводят к развитию защелачивания.

Довольно часто состояние грозит алкалозом, если есть эндокринная патология, при гиперальдостеронизме и при болезни Иценко-Кушинга, при приеме глюкокортикоидных гормонов.

В отличие от закисления, у алкалоза есть особые симптомы для врачей: это выраженная головная боль, сонливость, и повышение нервно-мышечной возбудимости, при которой присоединяется судорожный синдром. Защелачивание плазмы и сопутствующие снижение концентрации калия вызывает постоянное нарушение сердечного ритма, а у пожилых пациентов может привести к мерцательной аритмии и другим осложнениям.

Полное, развернутое исследование, и точная интерпретация параметров кислотно-основного состояния может представлять собой непростую задачу. В том случае, если пациент не страдает хроническими заболеваниями, ведет здоровый образ жизни, и придерживается правил здорового питания, то при исследовании крови на кислотно-основное состояние можно быть спокойным, что pH находится в норме.

Но у пациента, который нормально себя чувствует, но при этом имеется хроническое метаболическое расстройство, воспалительное заболевание или обменные нарушения – то в таком случае существует риск значительного утяжеления состояния в случае развития даже незначительной декомпенсации.

Цены на Кислотно-основное состояние

  • Исследование уровня карбоксигемоглобина в крови 500 руб.
  • Исследование уровня метгемоглобина в крови 500 руб.
  • КЩС 1100 руб.

Исследование кислотно-щелочного состояния (КЩС) или кислотно-основного состояния (КОС) имеет важное значение в диагностике и лечении различных неотложных состояний, в том числе хирургических.

Под кислотностью и щелочностью понимают концентрацию свободных ионов водорода (Н +) в растворе, т.е. рН крови. Для эффективного протекания процессов жизнедеятельности концентрация свободных ионов водорода (Н +) должна находится в жестких пределах. В действительности исследование КЩС включает наряду с измерением рН определение и физиологически важных газов, присутствующих в крови (кислорода – О 2 и углекислого газа – СО 2) и еще около 20-ти других параметров. Все эти показатели и их значения тесно взаимосвязаны друг с другом.

У пациентов реанимационного и операционного блоков могут наблюдаться существенные изменения этих показателей в течение коротких промежутков времени. Исследования КЩС, в отличие от всех других видов лабораторных анализов, выполняется на пробах артериальной крови.

Для нормального функционирования всех клеток организма необходим кислород (О 2). Решающая роль в транспорте кислорода к тканям принадлежит содержащемуся в эритроцитах гемоглобину. Под термином «гемоглобин» подразумевают несколько форм гемоглобина, которые присутствуют в крови человека, как в норме, так при патологии. Более 98% кислорода, поглощенного легкими из вдыхаемого воздуха, переносится к клеткам организма кровью в виде оксигемоглобина. В норме в крови в небольших количествах присутствуют фракции гемоглобина, не способные переносить О 2 – дисгемоглобины (сульфгемоглобин, метгемоглобин, карбоксигемоглобин).

Метгемоглобин постоянно образуется в результате нормального метаболизма клеток организма. Метгемоглобин содержит трехвалентное железо и не способен к транспорту кислорода! При образовании значительных количеств метгемоглобина транспортировочная функция крови резко нарушается. В организме существует механизм регуляции уровня метгемоглобина в крови, который поддерживает долю этой фракции не выше 1,0 – 1,5% от общего гемоглобина.

Карбоксигемоглобин - прочное соединение гемоглобина (Hb) и угарного газа (СО). Карбоксигемоглобин образуется очень быстро, поскольку способность присоединяться к гемоглобину у угарного газа примерно в 200 раз выше, чем у кислорода. Карбоксигемоглобин не способен переносить кислород к тканям организма, поэтому при отравлении окисью углерода у человека может быстро наступить смерть. В больших количествах карбоксигемоглобин образуется при отравлении угарным газом, а в небольших всегда присутствует в крови всех курильщиков и жителей больших городов.

Показания:

Анализа КЩС необходим

· Для постановки диагноза анализ газов крови – неотъемлемая часть постановки диагноза дыхательной недостаточности и первичной гипервентиляции. Он также выявляет метаболический ацидоз и алкалоз.

· Для оценки тяжести заболевания

· Для контроля эффективности лечения такой анализ очень важен для подбора терапии кислородом (О 2) для пациентов с хронической дыхательной недостаточностью типа 2 и для оптимизации установок аппарата ИВЛ.

Увеличение метгемоглобина (FMetHb) в крови развивается при:

· отравлении нитритами, нитратами, нитрозосоединениями, анилином, сульфонамидами, ацетанилидом, хлоридами, бромидами и др

· наследственном дефиците НАДН-метгемоглобинредуктазы: низкая активность фермента проявляется в раннем детском возрасте. Клинических последствий, как правило, это заболевание не имеет, проявляясь незначительным косметическим дефектом.

· наличие аномальных вариантах гемоглобина, обозначаемых как гемоглобин М

Увеличение карбоксигемоглобина (FСОHb) в крови развивается при:

· отравлении угарным газом. При уровне FСОHb выше 30% отмечаются сильные головные боли, общая слабость, рвота, одышка, тахикардия, а при уровне 50% - судороги, кома; выше 70% наступает дыхательная недостаточность и возможен летальный исход.

Методика:

Определение газов крови, кислотно-щелочного статуса, параметров оксиметрии проводятся на анализаторе «ABL 800 FLEX» фирмы «RADIOMETR», Дания, определение до 50 параметров.