» » Что такое ядерная энергия. Ядерная энергия

Что такое ядерная энергия. Ядерная энергия

Когда стало ясно, что углеводородные источники сырья, такие как нефть, газ, уголь – исчерпываются. Это означает, что мы должны искать новые виды энергии. Сейчас очень серьёзно встал вопрос о возможности катастрофических изменений климата, связанных с тем, что обычные тепловые станции создают парниковый слой газа. И в результате, на Земле происходит глобальное потепление. Это абсолютно определённо. Надо искать новые виды энергии, которые не приводят к этому.

Кувшинов Вячеслав Иванович:
Строение атома и структура атома (то что он имеет внутри ядро) стало известно только в прошлом веке. Когда шла Вторая мировая война шла, стало ясно, что из ядра атома можно извлечь колоссальную энергию. Естественно, продумывался вариант, как это можно использовать с точки зрения оружия, с точки зрения атомной бомбы.
И только в 50-х годах, встал вопрос о мирном использовании атомной энергии, возникло понятие «мирный атом».

Первая Атомная электростанция в Советском Союзе была построена в Обнинске. Любопытно, что директором первой Атомной электростанции был академик Андрей Капитонович Красин, который, кстати, потом стал директором Института энергетических и ядерных исследований «Сосны».

Кувшинов Вячеслав Иванович:
Возьмёмпротоны и нейтроны, из которых состоит ядро. Если они сидят внутри ядра – они тесно связаны ядерными силами. Почему тесно? Потому что, например, два протона – имеют одинаковый электрический заряд, они должны колоссально отталкиваться, однако, они стянуты. Таким образом, внутри ядра есть ядерные силы. И, оказывается, что часть массы протонов и нейтронов переходит в энергию. И существует такая знаменитая формула, которую сейчас даже на майках пишут E = Mc2 . E - энергия, M - это масса частиц, С в квадрате – это скорость света.
Оказывается, есть ещё специальная энергия, которая связана с массой тела. И если в ядре есть какая-то запасённая энергия, если ядро раскололи, то эта энергия в виде энергии осколков выделяется. И именно её количество (Е) равно (М) на (квадрат скорости света). Вот в результате деления одного ядра у вас появляется некая энергия в виде энергии осколков.
Тут интересно то, что когда происходит деление большого количества, например, уранового топлива, то происходит цепная ядерная реакция. Это означает, что ядра делятся практически одновременно. При этом выделяется колоссальное количество энергии. Например, 1,5 кг уранового топлива может заменить 1,5 вагона угля.

Какую роль играет скорость света в этой универсальной формуле?

Кувшинов Вячеслав Иванович:
Эйнштейн построил свои формулы изменения скорости света из одной системы координат в другую, из которой следует, что скорость света – постоянная, а все другие скорости других тел и предметов – меняются. Любопытно, что из формулы относительности Эйнштейна выходит, что путешествие во времени – возможно!Из неё следует так называемый «парадокс близнецов». Он заключается в том, что один из близнецов, находящийся в ракете, разогнанной до скорости, близкой к скорости света, состарится меньше своего брата, остающегося на Земле.

Кувшинов Вячеслав Иванович, профессор, генеральный директор «Объединённого института энергетических и ядерных исследований «Сосны»:
По данным МАГАТЭ, только включение атомной энергии дает наиболее низкую стоимость электроэнергии. Белорусы увидят это преимущество в своих «жировках».

По исследованиям МГАТЭ к 2020 в топливно- энергетическом балансе Беларуси возникнет, как говорят, дыра. Специалисты утверждают, что закрыть пробел в потреблении энергии возможно будет только с помощью действующей атомной электростанции.

По данным МАГАТЭ в мире действует 441 энергоблок. Вокруг Беларуси 5 атомных электростанций. В соседской Украине действует Ровенская АЭС, в России – Смоленская, Ленинградская и в процессе строительства Балтийская АЭС.

Николай Груша, директор Департамента ядерной энергетки Министерства энергетики РБ:
Основная задача строительства АЭС, и вообще, основная задача энергетической политики в РБ – это снижение зависимости от поставок природного газа.
В вводом в эксплуатацию АЭС мощностью более 2 млн киловатт, во-первых, будет вырабатываться порядка 27-29 % всей производимой электроэнергии на АЭС. Это позволит заместить примерно 5 млрд кубических метров природного газа. То есть почти четверть того, что мы сегодня потребляем.

Когда немецким химикам Отто Гану и Фрицу Штрассману впервые удалось в 1938 г. расщепить ядро урана посредством нейтронного облучения, они не спешили сообщать публике о масштабах своего открытия. Эти эксперименты заложили основу использования атомной энергии — как в мирных, так и в военных целях.

Побочный продукт атомной бомбы

Отто Ган, сотрудничавший до своей эмшрации в 1938 г. с австрийским физиком Лизой Мейтнер, прекрасно сознавал, что расщепление ядра урана — неостановимая цепная реакция — означает атомную бомбу. США, сгремясь опередить Германию в создании ядерного оружия, начали Манхэттенский проект, предприятие невиданного размаха. В невадской пустыне выросли три города. Здесь работали в глубокой тайне 40 000 человек Под руководством Робсрга Оппенгеймера, «отца атомной бомбы», в рекордные сроки возникли около 40 исследовательских учреждений, лабораторий и заводов. Для добычи плутония был создан первый атомный реактор под трибуной футбольного стадиона Чикагского университета. Здесь под руководством Энрико Ферми была в 1942 г. запущена первая контролируемая самоподдерживающаяся цепная реакция. Для выделявшегося в результате тепла тогда еще не нашли полезного применения.

Электрическая энергия из ядерной реакции

В1954 г., в СССР была запущена первая в мире атомная электростанция. Она располагалась в Обнинске, примерно в 100 км от Москвы, и имела мощность 5 МВт. В1956 г. в английском местечке Колдер-Холл начал работу первый крупный ядерный реактор. Эта АЭС имела газовое охлаждение, обеспечивавшее относителыгую безопасность эксплуатации. Но на мировом рынке большее распространение получили разработанные в США в 1957 г. водо-водяные атомные реакторы, охлаждаемые водой под давлением. Такие станции можно строить со сравнительно низкими затратами, однако их надежность оставляет желать лучшего. На украинской атомной станции Чернобыль расплавление активной зоны реактора привело к взрыву с выбросом радиоактивных веществ в окружающую среду. Катастрофа, приведшая к гибели и тяжелым заболеваниям тысяч людей, повлекла за собой, особенно в Европе, многочиеленные протесты против использования атомной энергии.

  • 1896 г.: Анри Бекерель открыл радиоактивное излучение урана.
  • 1919 гл Эрнесту Резерфорду впервые удалось искусствешю вызвать ядерную реакцию, бомбардируя альфа-частицами атомы азота, превращавшегося при этом в кислород.
  • 1932 г.: Джемс Чедвик обстреливая альфа-частицами атомы бериллия, открыл нейтроны.
  • 19.38 г.: Отто Ган впервые добивается в лаборатории цепной реакции, расщепив нейтронами ядро урана.

Энергия ядерной реакции сосредоточена в ядре атома. Атом — крошечная частица из которых состоит вся материя во Вселенной.

Количество энергии при ядерном делении огромно и она может использоваться для создания электричества, но её сначала необходимо освободить от атома.

Получение энергии

Использование энергии ядерной реакции происходит с помощью оборудования, которое может управлять атомным делением для производства электроэнергии.

Топливо, используемое для реакторов и производства энергии чаще всего гранулы элемента урана. В ядерном реакторе атомы урана вынуждены разваливаться. Когда они разделились, атомы выделяют мельчайшие частицы, называемые продуктами деления. Продукты деления воздействуют на другие атомы урана для разделения — начинается цепная реакция. Энергия ядра, выделяющаяся из этой цепной реакции создает тепло. Тепло от атомного реактора сильно нагревает его, поэтому он должен охлаждаться. Технологически лучший охлаждающий агент обычно вода, но некоторые ядерные реакторы используют жидкий металл или расплавленные соли. Охлаждающее вещество, нагретое от ядра, производит пар. Пар воздействует на паровую турбину поворачивая её. Турбина через механическую передачу подключена к генератору, который вырабатывает электричество.
Реакторы управляются с помощью управляющих стержней которые можно настроить на количество вырабатываемого тепла. Управляющие стержни изготавливают из материала, как кадмий, гафний или бор чтобы поглощать некоторые из продуктов созданные ядерным делением. Стержни присутствуют во время цепной реакции для контроля реакции. Удаление стержней позволит сильнее развиться цепной реакции и создать больше электроэнергии.

Около 15 процентов мирового электричества генерируется атомными электростанциями.

Соединенные Штаты имеют более чем 100 реакторов, хотя США создает большую часть своей электроэнергии от ископаемого топлива и гидроэлектроэнергии.

В России 33 энергоблока на 10 атомных электростанциях -15% энергобаланса страны.

Литва, Франция и Словакия потребляют большую часть электроэнергии от атомных электростанций.

Ядерное топливо используемое для получения энергии

Уран — это топливо наиболее широко используемое для того чтобы производилась энергия ядерной реакции. Это потому что атомы урана относительно легко делятся на части. Конкретный тип урана для производства под названием U-235, встречается редко. U-235 составляет менее одного процента урана в мире.

Уран добывается в Австралии, Канаде, Казахстане, России, Узбекистане и должен быть обработан, прежде чем его можно будет использовать.

Поскольку ядерное топливо может использоваться для создания оружия, то производство относится к договору о нераспространении такого оружия по импортированию урана или плутония или другого ядерного топлива. Договор способствует мирному использованию топлива, а также ограничению распространения такого типа оружия.

Типичный реактор использует около 200 тонн урана каждый год . Сложные процессы позволяют некоторой части урана и плутония повторно обогащаться или перерабатываться. Это уменьшает количество добычи, извлечения и обработки.

Ядерная энергии и люди

Ядерная атомная энергия производит электричество, которое может использоваться для электропитания домов, школ, предприятий и больниц.

Первый реактор для производства электроэнергии был сооружен в штате Айдахо, США и экспериментально начал питать себя в 1951 году.

В 1954 году в Обнинске, Россия, была создана первая атомная электростанция, предназначенных для обеспечения энергии для людей.

Строительство реакторов с извлечением энергия ядерной реакции требует высокий уровень технологий и только страны, которые подписали договор о нераспространении могут получать уран или плутоний, который требуется. По этим причинам большинство атомных станций расположены в развитых странах мира.

Атомные электростанции производят возобновляемую, экологически чистые ресурсы. Они не загрязняют воздух или производят выбросы парниковых газов. Они могут быть построены в городской или сельской местности и радикально не изменяют окружающую среду вокруг них.

Радиоактивный материал электростанций

Радиоактивный материал в р еакторе безопасен так как охлаждается в отдельной структуре, называемой градирни. Пар превращается обратно в воду и может снова использоваться для производства электроэнергии. Избыточный пар просто перерабатывается в атмосферу, где он не вредит как чистая вода.

Однако, энергия ядерной реакции имеет побочный продукт в виде радиоактивного материала. Радиоактивный материал представляет собой совокупность нестабильных ядер. Эти ядра теряют свою энергию и могут повлиять на многие материалы вокруг них, в том числе живые организмы и окружающую среду. Радиоактивный материал может быть чрезвычайно токсичным, вызывая болезни, увеличивая риск для рака, болезни крови и распад костей.

Радиоактивными отходами является то, что осталось от эксплуатации ядерного реактора.

Радиоактивные отходы покрывают защитную одежду, которую носили рабочие, инструменты и ткани, которые были в контакте с радиоактивной пылью. Радиоактивные отходы долговечны. Материалы, как одежда и инструменты, могут быть радиоактивны тысячи лет. Государство регулирует, как эти материалы удаляются, чтобы не загрязнять что-нибудь еще.

Используемое топливо и стержни чрезвычайно радиоактивны. Гранулы используемого урана должны храниться в специальных контейнерах, которые выглядят как большие бассейны.Некоторые заводы хранят используемое топливо в надземных резервуарах сухого хранения.

Вода, охлаждающая топливо, не контактирует с радиоактивностью поэтому безопасна.

Известны также у которых принцип работы несколько другой.

Использование атомной энергии и радиационная безопасность

Критики использования энергии ядерной реакции беспокоятся, что хранилища для радиоактивных отходов будут течь, иметь трещины или разрушаться. Радиоактивный материал затем мог бы загрязнять почвы и грунтовых вод вблизи объекта. Это может привести к серьезным проблемам со здоровьем людей и живых организмов в этом районе. Всем людям пришлось бы эвакуироваться.

Это то, что произошло в Чернобыле, Украина, в 1986 году. Паровой взрыв в одном из электростанций четвертого ядерного реактора разрушил его и возник пожар. Образовалось облако радиоактивных частиц, который упал на землю или дрейфовал с ветром, а частицы вошли в круговорот воды в природе как дождь. Большинство радиоактивных выпадений упали в Белоруссии.

Экологические последствия Чернобыльской катастрофы произошли немедленно. В километрах вокруг объекта сосновый лес засох, а красный цвет мертвых сосен получил в этом районе прозвище Рыжий лес. Рыба от близлежащей реки Припять получила радиоактивность и люди больше не смогут её употребить. Крупный рогатый скот и лошади умерли. Более 100 000 человек эвакуированы после катастрофы, но количество человеческих жертв Чернобыля трудно определить.

Последствия радиационного отравления появляются только после многих лет. У таких болезней как рак трудно определить источник.

Будущее ядерной энергии

Реакторы используют деление или расщепление атомов для производства энергии.

Энергия ядерной реакции может также производиться путем слияния или присоединения атомов вместе. Производится . Солнце, например, постоянно подвергается ядерному синтезу водородных атомов формируя гелий. Так как жизнь на нашей планете зависит от Солнца, можно сказать, что расщепление делает возможным жизнь на Земле.

Атомные электростанции пока не имеют возможности безопасно и надежно производить энергию путем ядерного синтеза (соединения), но ученые исследуют ядерный синтез, потому что этот процесс скорее всего будет безопасным и экономически более эффективным как альтернативный вид энергии.

Энергия ядерной реакции огромна и должна использоваться людьми.

Ядерная энергия - страшная и одновременно с этим прекрасная сила. При радиоактивном распаде и ядерных реакциях, протекающих в атомах, выделяется колоссальное количество энергии, которую люди пытаются использовать. Пытаются, потому что с развитием ядерной энергетики не только было сопряжено много жертв, но и катастроф (например, Чернобыльская АЭС). Тем не менее атомные электростанции по всему миру функционируют и производят порядка 15 процентов от мировой электроэнергии. Ядерные реакторы имеются в 31 стране мира. Также ядерными реакторами оснащаются корабли и подводные лодки. В любом случае отношение к ядерной энергии и вообще всему, что связано с ядерным распадом (в отличие от синтеза), ухудшается каждый год. Наступит день, когда энергия атома будет исключительно мирной.

В последних сериях сериала «Чернобыль» телекомпании HBO российские ученые открывают правду на причину произошедшего взрыва реактора 4-го энергоблока Чернобыльской АЭС, «опылившим» впоследствии радиоактивным цезием территории 17 стран Европы общей площадью 207,5 тысяч квадратных километров. Катастрофа на Чернобыльской АЭС выявила фундаментальные недостатки в реакторе РБМК-1000. Несмотря на это, сегодня 10 реакторов типа РБМК-1000 все еще работают в России. Безопасны ли они? По словам западных экспертов в ядерной физике, которые поделились своим мнением с порталом Live Science, этот вопрос остается открытым.

Белов Максим,Канисева ИННА

Применение атомной энергии в мирных целях.Работу готовили студенты 1 курса СПО..............................................................................................................................................................................................................................................................................................................................................................................................................................................................

Скачать:

Предварительный просмотр:

Государственное бюджетное общеобразовательное учреждение среднего профессионального образования « Самарский торгово-экономический колледж»

ДОКЛАД

Применение атомной энергии

Подготовили; Белов Максим, Канисева Инна - студенты ГБОУ СПО Самарского торгово- экономического колледжа.

Руководитель: Уракова Ахслу Рашидовна, преподаватель физики и математики.

САМАРА 2012

Атомная энергия

Уже в конце 20 века проблема поиска альтернативных источников энергии стала весьма актуальной. Несмотря на то, что наша планета поистине богата природными ископаемыми, такими как нефть, уголь, древесина и т.д., все эти богатства, к сожалению, исчерпаемы. К тому же, потребности человечества растут с каждым днем и приходится искать все более новые и совершенные источники энергии.
На протяжении долгого времени человечество находило те или иные варианты решения вопроса альтернативных источников энергии, но настоящим прорывом в истории энергетики стало появление ядерной энергии. Ядерная теория прошла долгий путь развития, прежде чем люди научились применять ее в своих целях. Все началось еще в 1896 году, когда А.Беккерель зарегистрировал невидимые лучи, которые испускала урановая руда, и которые обладали большой проникающей способностью. В дальнейшем это явление получило название радиоактивности. История развития ядерной энергии содержит в себе несколько десятков выдающихся фамилий, в том числе и советских физиков. Завершающим этапом развития можно назвать 1939 год – когда Ю.Б.Харитон и Я.Б.Зельдович теоретически показали возможность осуществления цепной реакции деления ядер урана-235. Далее развитие ядерной энергетики шло семимильными шагами. По самым приблизительным подсчетам энергию, которая выделяется при расщеплении 1 килограмма урана, можно сравнить с энергией, которая получается при сжигании 2 500 000 кг каменного угля.

Но из-за начавшейся войны, все исследования были перенаправлены в военную область. Первым примером ядерной энергии, который человек смог продемонстрировать всему миру, стала атомная бомба… Потом водородная… Лишь спустя годы научное сообщество обратило свое внимание на более мирные области, где применение ядерной энергии могло бы стать действительно полезным.
Так начался рассвет самой молодой области энергетики. Стали появляться атомные электростанции (АЭС), причем первая в мире АЭС была построена в городе Обнинске Калужской области. На сегодняшний день насчитывается несколько сотен атомных электростанций по всему миру. Развитие ядерной энергетики происходило невероятно стремительно. Меньше чем за 100 лет она смогла достигнуть сверхвысокого уровня технологического развития. То количество энергии, которое выделяется при делении ядер урана или плутония, несравнимо велико – это сделало возможным создание крупных атомных электростанций промышленного типа.
Так как же получают эту энергию? Все дело в цепной реакции деления ядер некоторых радиоактивных элементов. Обычно используется уран-235 или плутоний. Деление ядра начинается, когда в него попадает нейтрон – элементарная частица, не имеющая заряда, но обладающая сравнительно большой массой (на 0,14 % больше, чем масса протона). В результате образуются осколки деления и новые нейтроны, обладающие высокой кинетической энергией, которая в свою очередь активно преобразуется в тепло.
Данный вид энергии производят не только в АЭС. Он так же используется на атомных подводных лодках и атомных ледоколах.
Для нормального функционирования АЭС им все-таки необходимо топливо. Как правило, это уран. Этот элемент имеет широкое распространение в природе, но при этом труднодоступен. В природе не существует залежей урана (как например нефти), он как бы «размазан» по всей земной коре. Самые богатые урановые руды, которые встречаются очень редко, содержат до 10% чистого урана. Уран обычно содержится в урансодержащих минералах в качестве изоморфно замещающего элемента. Но при всем это общее количество урана на планете грандиозно велико. Возможно в ближайшем будущем новейшие технологии позволят увеличить процент добычи урана.
Но столь мощный источник энергии, а значит и силы, не может не вызывать опасений. Постоянно ведутся споры о его надежности и безопасности. Трудно оценить какой ущерб наносит атомная энергетика окружающей среде. Настолько ли она эффективна и выгодна, чтобы пренебрегать такими потерями? Насколько она безопасна? Причем, в отличие от любой другой энергетики, речь ведется не только об экологической безопасности. Все прекрасно помнят страшные последствия событий в Хиросиме и Нагасаки. Когда человечество обладает такой мощью, встает вопрос а достойно ли оно такого могущества? Сможем ли мы достойно распоряжаться тем, что имеем и не разрушать это?
Если бы завтра на нашей планете закончились все запасы источников традиционной энергии, то ядерная энергетика, пожалуй, стала бы единственной областью, которая реально смогла бы заменить ее. Нельзя отрицать ее преимущества, но и не стоит забывать о возможных последствиях.

Применение атомной энергии

Энергия деления ядер урана или плутония применяется в ядерном и термоядерном оружии (как пускатель термоядерной реакции). Существовали экспериментальные ядерные ракетные двигатели, но испытывались они исключительно на Земле и в контролируемых условиях, по причине опасности радиоактивного загрязнения в случае аварии.

На атомных электрических станциях ядерная энергия используется для получения тепла, используемого для выработки электроэнергии и отопления. Ядерные силовые установки решили проблему судов с неограниченным районом плавания (атомные ледоколы , атомные подводные лодки , атомные авианосцы ). В условиях дефицита энергетических ресурсов ядерная энергетика

Энергия, выделяемая при радиоактивном распаде, используется в долгоживущих источниках тепла и бетагальванических элементах. Автоматические межпланетные станции типа «Пионер» и «Вояджер» используют радиоизотопные термоэлектрические генераторы. Изотопный источник тепла использовал советский Луноход-1 .

Энергия термоядерного синтеза применяется в водородной бомбе .

Ядерная энергия используется в медицине:

  1. Функциональная диагностика: сцинтиграфия и позитрон-эмиссионная томография
  2. Диагностика: радиоиммунология
  3. Лечение рака щитовидной железы с помощью изотопа 131 I
  4. Протонная хирургия

На сегодняшний день ядерная медицина позволяет исследовать практически все системы органов человека и находит применение в

Чернобыльская Катастрофа

Почти 25 лет прошло после страшного события, повергшего в шок весь мир. Отголоски этой катастрофы века еще долго будут бередить души людей, а ее последствия еще не раз коснутся человека.

Чернобыльская катастрофа и ее последствия

Последствия Чернобыльской катастрофы дали знать о себе в первые же месяцы после взрыва. Люди, проживавшие на территориях, прилежащих к месту трагедии, умирали от кровоизлияний и апоплексических ударов.
Пострадали ликвидаторы последствий аварии: из общего числа ликвидаторов в 600 000 около 100 000 человек уже нет в живых – они умерли от злокачественных опухолей и разрушения системы кроветворения. Существование других ликвидаторов не назовешь безоблачным – они страдают от многочисленных заболеваний, в том числе онкологических, расстройств нервной и эндокринной системы.

Но тем не менее в условиях дефицита энергетических ресурсов ядерная энергетика считается наиболее перспективной в ближайшие десятилетия.

Список литературы

1. Игнатенко. Е. И. Чернобыль: события и уроки. М., 1989г.

2. Атомная энергетика. История и современность. М., Наука. 1991г