» » График равномерного движения физика. Определение перемещения и пути по графику

График равномерного движения физика. Определение перемещения и пути по графику

Механическое движение представляют графическим способом. Зависимость физических величин выражают при помощи функций . Обозначают

Графики равномерного движения

Зависимость ускорения от времени . Так как при равномерном движении ускорение равно нулю, то зависимость a(t) - прямая линия, которая лежит на оси времени.

Зависимость скорости от времени. Скорость со временем не изменяется, график v(t) - прямая линия, параллельная оси времени.


Численное значение перемещения (пути) - это площадь прямоугольника под графиком скорости.

Зависимость пути от времени. График s(t) - наклонная линия.

Правило определения скорости по графику s(t): Тангенс угла наклона графика к оси времени равен скорости движения.

Графики равноускоренного движения

Зависимость ускорения от времени. Ускорение со временем не изменяется, имеет постоянное значение, график a(t) - прямая линия, параллельная оси времени.

Зависимость скорости от времени . При равномерном движении путь изменяется, согласно линейной зависимости . В координатах . Графиком является наклонная линия.

Правило определения пути по графику v(t): Путь тела - это площадь треугольника (или трапеции) под графиком скорости.

Правило определения ускорения по графику v(t): Ускорение тела - это тангенс угла наклона графика к оси времени. Если тело замедляет движение, ускорение отрицательное, угол графика тупой, поэтому находим тангенс смежного угла.


Зависимость пути от времени. При равноускоренном движении путь изменяется, согласно

ГРАФИКИ

Определение вида движения по графику

1. Равноускоренному движению соответствует график зависимости модуля ускорения от времени, обозначенный на рисунке буквой



2. На рисунках изображены графики зависимости моду­ля ускорения от времени для разных видов движения. Какой график соответствует равномерному движению?

1) 1 2) 2 3) 3 4) 4

3.
Тело, двигаясь вдоль оси Ох прямолинейно и равноу­скоренно, за некоторое время уменьшило свою скорость в 2 раза. Какой из графиков зависимости проекции ускорения от времени соответствует такому движению?

1) 1 2) 2 3) 3 4) 4

4. Парашютист движется вертикально вниз с постоянной по зна­чению скоростью. Какой график - 1, 2, 3 или 4 - правильно отражает зависимость его координаты Y от времени движения t относительно поверхности земли? Сопротивлением воздуха пренебречь.

1) 1 2) 2 3) 3 4) 4

5. Какой из графиков зависимости проекции скорости от времени (рис.) соответствует движению тела, брошенного вертикально вверх с некоторой скоро­стью (ось Y направлена вертикально вверх)?

1) 1 2) 2 3) 3 4) 4

6.
Тело бросили вертикально вверх с некоторой началь­ной скоростью с поверхности земли. Какой из графиков зависимости высоты тела над поверхностью земли от времени (рис.) соответствует этому движению?

1) 1 2) 2 3) 3 4) 4

Определение и сравнение характеристик движения по графику

7. На графике приведена зависимость проекции скорости тела от времени при прямолинейном движении. Определите проекцию ускорения тела.

1) – 10 м/с 2

2) – 8 м/с 2

3) 8 м/с 2

8.
На рисунке изображен график зависимости скорости движения тел от времени. Чему равно ускорение тела?

2) 2 м/с 2

9. По графику зависимости проекции скорости от времени, представленному па рисунке, определите ускорение прямоли­нейно движущегося тела в момент времени t = 2 с.

3) 10 м/с 2

10. На рисунке представлен график движения автобуса из пункта А в пункт Б и обратно. Пункт А находится в точке х = 0, а пункт Б в точке х = 30 км. Чему равна скорость автобуса на пути из А в Б?



11. На рисунке представлен график движения автобуса из пункта А в пункт Б и обратно. Пункт А находится в точке х = 0, а пункт Б в точке х = 30 км. Чему равна скорость автобуса на пути из Б в А?

12. Автомобиль движется по прямой улице. На графике представлена зависимость скорости автомобиля от времени. Модуль ускорения максимален в интервале времени

1) от 0 с до 10 с

2) от 10 с до 20 с

3) от 20 с до 30 с

4) от 30 с до 40 с

13. Четыре тела движутся вдоль оси Оx .На рисунке изображены графики зависимости проекций скоростей υ x от времени t для этих тел. Какое из тел движется с наименьшим по модулю ускорением?

1) 1 2) 2 3) 3 4) 4

14. На рисунке представ­лен график зависимости пути S велосипедиста от времени t. Определите интервал времени, когда велосипедист двигался со скоростью 2,5 м/с.

1) от 5 с до 7 с

От 3 с до 5 с

3) от 1 с до 3 с

4) от 0 до 1 с

15. На рисунке представлен график зависимости координаты тела, движущегося вдоль оси , от времени. Сравните скорости v 1 , v 2 и v 3 тела в моменты времени t 1 , t 2 , t 3

1) v 1 > v 2 = v 3

2) v 1 > v 2 > v 3

3) v 1 < v 2 < v 3

4) v 1 = v 2 > v 3

16. На рисунке приведен график зависимости проекции скорости тела от времени.

Проекция ускорения тела в интервале времени от 5 до 10 с представлена графиком

1) 1 2) 2 3) 3 4) 4

17. Материальная точка движется прямолинейно с ускорением, зависимость от времени которого приведена на рисунке. Начальная скорость точки равна 0. Какая точка на графике соответствует максимальной скорости материальной точки:

Составление кинематических зависимостей (функций зависимости кинематических величин от времени) по графику

18. На рис. изображен график зависимости координаты тела от времени. Определите кинематический закон движения этого тела

1) x(t) = 2 + 2t

2) x(t) = – 2 – 2t

3) x(t) = 2 – 2t

4) x(t) = – 2 + 2t

19. По графику зависимости скорости тела от времени определите функцию зависимости скорости этого тела от времени

1) v x = – 30 + 10t

2) v x = 30 + 10t

3) v x = 30 – 10t

4) v x = – 30 + 10t

Определение перемещения и пути по графику

20. По графику зависимости скорости тела от времени определите путь, пройденный прямолинейно движущимся телом за 3 с.

21. Камень брошен вертикально вверх. Проекция его скорости на вертикальное направление изменяется со временем согласно графику на рисунке. Чему равен путь, пройденный камне за первые 3 с?

22. Камень брошен вертикально вверх. Проекция его скорости на вертикальное направление изменяется со временем согласно графику на рисунке к з.17. Чему равен путь, пройденный камнем за все время полета?



23. Камень брошен вертикально вверх. Проекция его скорости на вертикальное направление изменяется со временем согласно графику на рисунке к з.17. Чему равно перемещение камня за первые 3 с?



24. Камень брошен вертикально вверх. Проекция его скорости на вертикальное направление изменяется со временем согласно графику на рисунке к з.17. Чему равно перемещение камня за все время полета?



25. На рисунке дан график зависимости проекции скорости тела, движущегося вдоль оси Ох, от времени. Чему равен путь, пройденный телом к моменту времени t = 10 с?



26. Тележка начинает движение из состояния покоя вдоль бу­мажной ленты. На тележке стоит капельница, которая че­рез равные промежутки времени оставляет на ленте пятна краски.

Выберите график зависимости величины скорости от вре­мени, который правильно описывает движение тележки.

1) 1 2) 2 3) 3 4) 4

УРАВНЕНИЯ

27. Движение троллейбуса при аварийном торможении задано уравнением: x = 30 + 15t – 2,5 t 2 , м Чему равна начальная координата троллейбуса?



28. Движение самолета при разбеге задано уравнением: x = 100 + 0,85t 2 , м Чему равно ускорение самолета?


3) 1,7 м/с 2


29. Движение легкового автомобиля задано уравнением: x = 150 + 30t + 0,7t 2 , м. Чему равна начальная скорость автомобиля?



30. Уравнение зависимости проекции скорости движу­щегося тела от времени: v x = 2 +3t (м/с). Каково соответствующее уравнение проекции перемещения тела?

1) S x = 2t + 3t 2 2) S x = 4t + 3t 2 3) S x = t + 6t 2 4)S x = 2t + 1,5t 2

31. Зависимость координаты от времени для некоторого тела описывается уравнением х = 8t – t 2 . В какой момент времени скорость тела равна нулю?



ТАБЛИЦЫ

32. В таблице приведены результаты измерений пути при свободном падении стального шарика в разные моменты времени. Каково, ско­рее всего, было значение пути, пройденное шариком при падении, к моменту времени t = 2 с?

1) 7,5 м 2) 10 м 3) 20 м 4) 40 м

34. В таблице представлена зависимость координаты х движения тела от времени t :

С какой скоростью двигалось тело от момента времени 0 с до мо­мента времени 3 с?


4) 3 м/с


36. В таблице представлена зависимость координаты х движения тела от времени t :

С какой скоростью двигалось тело от момента времени 3 с до до момента времени 5 с?



38. В таблице представлена зависимость скорости движения тела v от времени t :


3) 17 м


40. В таблице представлена зависимость скорости движения тела v от времени t :

Определите путь, пройденный телом в интервале от момен­та времени 0 с до момента времени 2 с.



42. В таблице представлена зависимость скорости движения тела v от времени t :

t, с
v, м/с

Определите путь, пройденный телом в интервале от момен­та времени 0 с до момента времени 5 с.


4) 25 м


43. Четыре тела двигались по оси Ох. В таблице представлена зависимость их координат от времени.

t, с
x 1 м -2 -4
х 2 , м
х 3 , м
х 4 , м -2

У какого из тел скорость могла быть постоянна и отлична от нуля?


1) 1 2) 2 3) 3 4) 4

44. Четыре тела двигались по оси Ох. В таблице представлена зависимость их координат от времени.

t, с
x 1 м -2 -4
х 2 , м
х 3 , м
х 4 , м -2

У какого из тел ускорение могло быть постоянно и отлично от нуля?


Если траектория движения точки известна, то зависимость пути , пройденного точкой, от истекшего промежутка времени дает полное описание этого движения. Мы видели, что для равномерного движения такую зависимость можно дать в виде формулы (9.2). Связь между и для отдельных моментов времени можно задавать также в виде таблицы, содержащей соответственные значения промежутка времени и пройденного пути. Пусть нам дано, что скорость некоторого равномерного движения равна 2 м/с. Формула (9.2) имеет в этом случае вид . Составим таблицу пути и времени такого движения:

Зависимость одной величины от другой часто бывает удобно изображать не формулами или таблицами, а графиками, которые более наглядно показывают картину изменения переменных величин и могут облегчать расчеты. Построим график зависимости пройденного пути от времени для рассматриваемого движения. Для этого возьмем две взаимно перпендикулярные прямые - оси координат; одну из них (ось абсцисс) назовем осью времени, а другую (ось ординат) - осью пути. Выберем масштабы для изображения промежутков времени и пути и примем точку пересечения осей за начальный момент и за начальную точку на траектории. Нанесем на осях значения времени и пройденного пути для рассматриваемого движения (рис. 18). Для «привязки» значений пройденного пути к моментам времени проведем из соответственных точек на осях (например, точек 3 с и 6 м) перпендикуляры к осям. Точка пересечения перпендикуляров соответствует одновременно обеим величинам: пути и моменту , - этим способом и достигается «привязка». Такое же построение можно выполнить и для любых других моментов времени и соответственных путей, получая для каждой такой пары значений время - путь одну точку на графике. На рис. 18 выполнено такое построение, заменяющее обе строки таблицы одним рядом точек. Если бы такое построение было выполнено для всех моментов времени, то вместо отдельных точек получилась бы сплошная линия (также показанная на рисунке). Эта линия и называется графиком зависимости пути от времени или, короче, графиком пути.

Рис. 18. График пути равномерного движения со скоростью 2 м/с

Рис. 19. К упражнению 12.1

В нашем случае график пути оказался прямой линией. Можно показать, что график пути равномерного движения всегда есть прямая линия; и обратно: если график зависимости пути от времени есть прямая линия, то движение равномерно.

Повторяя построение для другой скорости движения, найдем, что точки графика для большей скорости лежат выше, чем соответственные точки графика для меньшей скорости (рис. 20). Таким образом, чем больше скорость равномерного движения, тем круче прямолинейный график пути, т. е. тем больший угол он составляет с осью времени.

Рис. 20. Графики пути равномерных движений со скоростями 2 и 3 м/с

Рис. 21. График того же движения, что на рис. 18, вычерченный в другом масштабе

Наклон графика зависит, конечно, не только от числового значения скорости, но и от выбора масштабов времени и длины. Например, график, изображенный на рис. 21, дает зависимость пути от времени для того же движения, что и график рис. 18, хотя и имеет другой наклон. Отсюда ясно, что сравнивать движения по наклону графиков можно только в том случае, если они вычерчены в одном и том же масштабе.

С помощью графиков пути можно легко решать разные задачи о движении. Для примера на рис. 18 штриховыми линиями показаны построения, необходимые для того, чтобы решить следующие задачи для данного движения: а) найти путь, пройденный за время 3,5 с; б) найти время, за которое пройден путь 9 м. На рисунке графическим путем (штриховые линии) найдены ответы: а) 7 м; б) 4,5 с.

На графиках, описывающих равномерное прямолинейное движение, можно откладывать по оси ординат вместо пути координату движущейся точки. Такое описание открывает большие возможности. В частности, оно позволяет различать направление движения по отношению к оси . Кроме того, приняв начало отсчета времени за нуль, можно показать движение точки в более ранние моменты времени, которые следует считать отрицательными.

Рис. 22. Графики движений с одной и той же скоростью, но при различных начальных положениях движущейся точки

Рис. 23. Графики нескольких движений с отрицательными скоростями

Например, на рис. 22 прямая I есть график движения, происходящего с положительной скоростью 4 м/с (т. е. в направлении оси ), причем в начальный момент движущаяся точка находилась в точке с координатой м. Для сравнения на том же рисунке дан график движения, которое происходит с той же скоростью, но при котором в начальный момент движущаяся точка находится в точке с координатой (прямая II). Прямая. III соответствует случаю, когда в момент движущаяся точка находилась в точке с координатой м. Наконец, прямая IV описывает движение в случае, когда движущаяся точка имела координату в момент с.

Мы видим, что наклоны всех четырех графиков одинаковы: наклон зависит только от скорости движущейся точки, а не от ее начального положения. При изменении начального положения весь график просто переносится параллельно самому себе вдоль оси вверх или вниз на соответственное расстояние.

Графики движений, происходящих с отрицательными скоростями (т. е. в направлении, противоположном направлению оси ), показаны на рис. 23. Они представляют собой прямые, наклоненные вниз. Для таких движений координата точки с течением времени уменьшается., имела координаты

Графики пути можно строить и для случаев, в которых тело движется равномерно в течение определенного промежутка времени, затем движется равномерно, но с другой скоростью в течение другого промежутка времени, затем снова меняет скорость и т. д. Например, на рис. 26 показан график движения, в котором тело двигалось в течение первого часа со скоростью 20 км/ч, в течение второго часа - со скоростью 40 км/ч и в течение третьего часа - со скоростью 15 км/ч.

Задание: 12.8. Постройте график пути для движения, в котором за последовательные часовые промежутки тело имело скорости 10, -5, 0, 2, -7 км/ч. Чему равно суммарное перемещение тела?

§ 14. ГРАФИКИ ПУТИ И СКОРОСТИ

Определение пути по графику скорости

В физике и математике используют три способа подачи информации о связи между различными величинами: а) в виде формулы, например, s =v ∙ t; б) в виде таблицы; в) в виде графика (рисунка).

Зависимость скорости от времени v(t) - график скорости изображается с помощью двух взаимно перпендикулярных осей. Вдоль горизонтальной оси будем откладывать время, а по вертикальной - скорость (рис. 14.1). Надо заблаговременно продумать масштаб, чтобы рисунок не был слишком большим или слишком малым. У конца оси указывают букву, которая является обозначением численно равна площади заштрихованного прямоугольника abcd величины, что на ней откладывается. Возле буквы указывают единицу измерения этой величины. Например, возле оси времени указывают t, с, а возле оси скорости v(t), мес. Выбирают масштаб и наносят деления на каждую ось.

Рис. 14.1. График скорости тела, равномерно движущегося со скоростью 3 м/сек. Путь, пройденный телом со 2-й по 6-ю секунды,

Изображение равномерного движения таблицей и графиками

Рассмотрим равномерное движение тела со скоростью 3 м/с, то есть числовое значение скорости будет постоянным в течение всего времени движения. Сокращенно это записывают так: v = const (константа, то есть постоянная величина). В нашем примере она равна трем: v = 3 . Вы уже знаете, что информацию о зависимости одной величины от другой можно подавать в виде таблицы (массива, как говорят в информатике):

Из таблицы видно, что во все указанные моменты времени скорость равна 3 м/сек. Пусть масштаб оси времени 2 кл. = 1 с, а оси скорости 2 кл. = 1 м/сек. График зависимости скорости от времени (сокращенно говорят: график скорости) приведены на рисунке 14.1.

С помощью графика скорости можно найти путь, который тело проходит за определенный интервал времени. Для этого нужно сопоставить два факта: с одной стороны, путь можно найти, умножив скорость на время, а с другой - произведение скорости на время, как видно из рисунка - это площадь прямоугольника со сторонами t и v.

Например, со второй до шестой секунды тело двигалось в течение четырех секунд и прошло 3 м/с ∙ 4 с = 12 м. Это площадь прямоугольника аbсd, длина которого равна 4 с (отрезок ad вдоль оси времени) и высота 3 м/с (отрезок аb вдоль вертикали). Площадь, правда, несколько необычная, поскольку измеряется не в м 2 , а в г. Следовательно, площадь под графиком скорости численно равна пройденному пути.

График пути

График пути s(t) можно изобразить, используя формулу s = v ∙ t, то есть в нашем случае, когда скорость составляет 3 м/с: s = 3 ∙ t. Построим таблицу:

Вдоль горизонтальной оси снова откладывают время (t, с), а вдоль вертикальной - путь. Возле оси пути пишем: s, м (рис. 14.2).

Определение скорости по графику пути

Изобразим теперь на одном рисунке два графика, которые будут соответствовать движениям со скоростями 3 м/с (прямая 2) и 6 м/с (прямая 1) (рис. 14.3). Видно, что чем больше скорость тела, тем круче линия точек графика.

Существует и обратная задача: имея график движения, нужно определить скорость и записать уравнение пути (рис. 14.3). Рассмотрим прямую 2. От начала движения и до момента времени t = 2 с тело прошло путь s = 6 м. Следовательно, его скорость: v = = 3 . Выбор другого интервала времени ничего не изменит, например, на момент t = 4 с путь, пройденный телом от начала движения, составляет s = 12 м. Отношение опять равна 3 м/сек. Но так и должно быть, поскольку тело движется с постоянной скоростью. Поэтому проще всего было бы выбрать интервал времени 1 с, ведь путь, пройденный телом за одну секунду, численно равна скорости. Путь, пройденный первым телом (график 1) за 1 с, равна 6 м, то есть скорость первого тела равна 6 м/сек. Соответствующие зависимости пути от времени в этих двух тел будут:

s 1 = 6 ∙ t и s 2 =3 ∙ t.

Рис. 14.2. График пути. Остальные точек, кроме шести, указанных в таблице, поставленные в задании, что движение упровдож всего времени был равномерным

Рис. 14.3. График пути в случае разных скоростей

Подведем итоги

В физике используют три способа подачи информации: графический, аналитический (по формулам) и таблицей (массивом). Третий способ более приспособлен для решения на компьютере.

Путь численно равен площади под графиком скорости.

Чем круче график s(t), тем больше скорость.

Творческие задания

14.1. Начертите графики скорости и пути, когда скорость тела равномерно увеличивается, или уменьшается.

Упражнение 14

1. Как определяют путь на графике скорости?

2. Можно ли записать формулу для зависимости пути от времени, имея график s(t)?

3. Или изменится угол наклона графика пути, если масштаб на осях уменьшить вдвое?

4. Почему график пути равномерного движения изображается прямой?

5. Какое из тел (рис. 14.4) имеет наибольшую скорость?

6. Назовите три способа представления информации о движении тела, а также (по вашему мнению) их преимущества и недостатки.

7. Как можно определить путь по графику скорости?

8. а) Чем отличаются графики пути для тел, движущихся с разными скоростями? б) Что в них общего?

9. По графику (рис. 14.1) найдите путь, пройденный телом от начала первой до конца третьей секунды.

10. Какой путь прошло тело (рис. 14.2) за: а) две секунды; б) четыре секунды? в) Укажите, где начинается третья секунда движения, и где она заканчивается.

11. Изобразите на графиках скорости и пути движение со скоростью а) 4 м/с; б) 2 м/сек.

12. Запишите формулу зависимости пути от времени для движений, изображенных на рис. 14.3.

13. а) Найдите скорости тел по графикам (рис. 14.4); б) запишите соответствующие уравнения пути и скорости. в) Постройте графики скорости этих тел.

14. Постройте графики пути и скорости для тел, движения которых заданы уравнениями: s 1 = 5 ∙ t и s 2 = 6 ∙ t. Чему равны скорости тел?

15. По графикам (рис. 14.5) определите: а) скорости тела; б) пути, пройденные ими за первые 5 сек. в) Запишите уравнение пути и постройте соответствующие графики для всех трех движений.

16. Начертите график пути для движения первого тела относительно второго (рис. 14.3).

Графическое представление
равномерного прямолинейного движения

График скорости показывает, как изменяется скорость тела с течением времени. В прямолинейном равномерном движении скорость с течением времени не изменяется. Поэтому график скорости такого движения представляет собой прямую, параллельную оси абсцисс (оси времени). На рис. 6 изображены графики скорости двух тел. График 1 относится к случаю, когда тело движется в положительном направлении оси О х (проекция скорости тела положительна), график 2 - к случаю, когда тело движется против положительного направления оси О х (проекция скорости отрицательна). По графику скорости можно определить пройденный телом (Если тело не меняет направления своего движения, длина пути равна модулю его перемещения).

2. График зависимости координаты тела от времени который иначе называют графиком движения

На рис. изображены графики движения двух тел. Тело, графиком которого является прямая 1, движется в положительном направлении оси О х, а тело, график движения которого - прямая 2, движется противоположно положительному направлению оси О х.

3. График пути

Графиком является прямая линия. Эта прямая проходит через начало координат (рис.). Угол наклона этой прямой к оси абсцисс тем больше, чем больше скорость тела. На рис. изображены графики 1 и 2 пути двух тел. Из этого рисунка видно, что за одно и то же время t тело 1, имеющее большую скорость, чем тело 2, проходит больший путь (s 1 >s 2).

Прямолинейное равноускоренное движение – самый простой вид неравномерного движения, при котором тело движется вдоль прямой линии, а его скорость за любые равные промежутки времени меняется одинаково.

Равноускоренное движение – это движение с постоянным ускорением.

Ускорение тела при его равноускоренном движении – это величина, равная отношению изменения скорости к промежутку времени, за которое это изменение произошло:

→ →
→ v – v 0
a = ---
t

Вычислить ускорение тела, движущегося прямолинейно и равноускоренно, можно с помощью уравнения, в которое входят проекции векторов ускорения и скорости:

v x – v 0x
a x = ---
t

Единица ускорения в СИ: 1 м/с 2 .

Скорость прямолинейного равноускоренного движения.

v x = v 0x + a x t

где v 0x – проекция начальной скорости, a x – проекция ускорения, t – время.


Если в начальный момент тело покоилось, то v 0 = 0. Для этого случая формула принимает следующий вид:

Перемещение при равнопеременном прямолинейном движении S x =V 0 x t + a x t^2/2

Координата при РУПД x=x 0 + V 0 x t + a x t^2/2

Графическое представление
равноускоренного прямолинейного движения

    График скорости

Графиком скорости является прямая линия. Если тело движется с некоторой начальной скоростью, эта прямая пересекает ось ординат в точке v 0x . Если же начальная скорость тела равна нулю, график скорости проходит через начало координат. Графики скорости прямолинейного равноускоренного движения изображены на рис. . На этом рисунке графики 1 и 2 соответствуют движению с положительной проекцией ускорения на ось О х (скорость увеличивается), а график 3 соответствует движению с отрицательной проекцией ускорения (скорость уменьшается). График 2 соответствует движению без начальной скорости, а графики 1 и 3 - движению с начальной скоростью v ox . Угол наклона a графика к оси абсцисс зависит от ускорения движения тела. По графикам скорости можно определить путь, пройденный телом за промежуток времени t.

Путь, пройденный в прямолинейном равноускоренном движении с начальной скоростью, численно равен площади трапеции, ограниченной графиком скорости, осями координат и ординатой, соответствующей значению скорости тела в момент времени t.

    График зависимости координаты от времени (график движения)

Пусть тело движется равноускоренно в положительном направлении О х выбранной системы координат. Тогда уравнение движения тела имеет вид:

x=x 0 +v 0x ·t+a x t 2 /2. (1)

Выражению (1)соответствует известная из курса математики функциональная зависимость у=ах 2 +bх+с (квадратный трехчлен). В рассматриваемом нами случае
a=|a x |/2, b=|v 0x |, c=|x 0 |.

    График пути

В равноускоренном прямолинейном движении зависимость пути от времени выражается формулами

s=v 0 t+at 2 /2, s= at 2 /2 (при v 0 =0).

Как видно из данных формул, эта зависимость квадратичная. Из обеих формул следует также, что s = 0 при t = 0. Следовательно, графиком пути прямолинейного равноускоренного движения является ветвь параболы. На рис. показан график пути при v 0 =0.

    График ускорения

График ускорения – зависимость проекции ускорения от времени:

прямолинейного равномерного движения . Графическое представление равномерного прямолинейного движения . 4. Мгновенная скорость. Сложение...

  • Урок Тема: "Материальная точка. Система отсчета" Цели: дать представление о кинематике

    Урок

    Определение равномерному прямолинейному движению . - Что называется скоростью равномерного движения ? - Назовите единицу скорости движения в... проекции вектора скорости от времени движения У (О. 2. Графическое представление движения . - В точке С...

  •